Loading…
The Functional Structure of Tropical Plant Communities and Soil Properties Enhance Ecosystem Functioning and Multifunctionality in Different Ecosystems in Ghana
Plant functional traits are useful in tracking changes in the environment, and play an important role in determining ecosystem functioning. The relationship between plant functional traits and ecosystem functioning remains unclear, although there is growing evidence on this relationship. In this stu...
Saved in:
Published in: | Forests 2022-02, Vol.13 (2), p.297 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Plant functional traits are useful in tracking changes in the environment, and play an important role in determining ecosystem functioning. The relationship between plant functional traits and ecosystem functioning remains unclear, although there is growing evidence on this relationship. In this study, we tested whether the functional structure of vegetation has significant effects on the provision of ecosystem services. We analysed plant trait composition (specific leaf area, leaf carbon and nitrogen ratio, isotopic carbon fraction, stem dry matter content, seed mass and plant height), soil parameters (nutrients, pH, bulk density) and proxies of ecosystem services (carbon stock, decomposition rate, invertebrate activity) in twenty-four plots in three tropical ecosystems (active restored and natural forests and an agroforestry system) in Ghana. For each plot, we measured above-ground biomass, decomposition rates of leaves and invertebrate activity as proxies for the provision of ecosystem services to evaluate (i) whether there were differences in functional composition and soil properties and their magnitude between ecosystem types. We further aimed to (ii) determine whether the functional structure and/or soil parameters drove ecosystem functions and multifunctionality in the three ecosystem types. For functional composition, both the leaf economic spectrum and seed mass dimension clearly separated the ecosystem types. The natural forest was more dominated by acquisitive plants than the other two ecosystem types, while the non-natural forests (agroforest and restored forest) showed higher variation in the functional space. The natural forest had higher values of soil properties than the restored forest and the agroforestry system, with the differences between the restored and agroforestry systems driven by bulk density. Levels of ecosystem service proxies and multifunctionality were positively related to the functional richness of forest plots and were mainly explained by the differences in site conditions. Our study demonstrated the effects of functional forest structure on ecosystem services in different forest ecosystems located in the semi-deciduous forest zone of Ghana. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f13020297 |