Loading…
Dyons and Roberge - Weiss transition in lattice QCD
We study lattice QCD with Nf = 2 Wilson fermions at nonzero imaginary chemical potential and nonzero temperature. We relate the Roberge - Weiss phase transition to the properties of dyons which are constituents of the KvBLL calorons. We present numerical evidence that the characteristic features of...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study lattice QCD with Nf = 2 Wilson fermions at nonzero imaginary chemical potential and nonzero temperature. We relate the Roberge - Weiss phase transition to the properties of dyons which are constituents of the KvBLL calorons. We present numerical evidence that the characteristic features of the spectral gap of the overlap Dirac operator as function of an angle modifying the boundary condition are determined by the Z3 sector of the respective imaginary chemical potential. We then demonstrate that dyon excitations in thermal configurations could be responsible (in line with perturbative excitations) for these phenomena. |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/201713703002 |