Loading…
Effects of Ambient Temperature on Nanosecond Laser Micro-Drilling of Polydimethylsiloxane (PDMS)
In this research, effects of ambient temperature (-100 °C-200 °C) on nanosecond laser micro-drilling of polydimethylsiloxane (PDMS) was investigated by simulation and experiment. A thermo-mechanical coupled model was established, and it was indicated that the top and bottom diameter of the micro-hol...
Saved in:
Published in: | Micromachines (Basel) 2022-12, Vol.14 (1), p.90 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this research, effects of ambient temperature (-100 °C-200 °C) on nanosecond laser micro-drilling of polydimethylsiloxane (PDMS) was investigated by simulation and experiment. A thermo-mechanical coupled model was established, and it was indicated that the top and bottom diameter of the micro-hole decreased with the decrease of the ambient temperature, and the micro-hole taper increased with the decrease of the ambient temperature. The simulation results showed a good agreement with the experiment results in micro-hole geometry; the maximum prediction errors of the top micro-hole diameter, the bottom micro-hole diameter and micro-hole taper were 2.785%, 6.306% and 9.688%, respectively. The diameter of the heat-affected zone decreased with the decrease of the ambient temperature. The circumferential wrinkles were controlled by radial compressive stress. As the ambient temperature increased from 25 °C to 200 °C, the radial compressive stress gradually decreased, which led to the circumferential wrinkles gradually evolving in the radial direction. This work provides a new idea and method based on ambient temperature control for nanosecond laser processing of PDMS, which provides exciting possibilities for a wider range of engineering applications of PDMS. |
---|---|
ISSN: | 2072-666X 2072-666X |
DOI: | 10.3390/mi14010090 |