Loading…

Impact of a High-Fat Diet at a Young Age on Wound Healing in Mice

As the prevalence of juvenile-onset obesity rises globally, the multitude of related health consequences gain significant importance. In this context, obesity is associated with impaired cutaneous wound healing. In experimental settings, mice are the most frequently used model for investigating the...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2023-12, Vol.24 (24), p.17299
Main Authors: Arnke, Kevin, Pfister, Pablo, Reid, Gregory, Vasella, Mauro, Ruhl, Tim, Seitz, Ann-Kathrin, Lindenblatt, Nicole, Cinelli, Paolo, Kim, Bong-Sung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As the prevalence of juvenile-onset obesity rises globally, the multitude of related health consequences gain significant importance. In this context, obesity is associated with impaired cutaneous wound healing. In experimental settings, mice are the most frequently used model for investigating the effect of high-fat diet (HFD) chow on wound healing in wild-type or genetically manipulated animals, e.g., diabetic / and / mice. However, these studies have mainly been performed on adult animals. Thus, in the present study, we introduced a mouse model for a juvenile onset of obesity. We exposed 4-week-old mice to an investigational feeding period of 9 weeks with an HFD compared to a regular diet (RD). At a mouse age of 13 weeks, we performed excisional and incisional wounding and measured the healing rate. Wound healing was examined by serial photographs with daily wound size measurements of the excisional wounds. Histology from incisional wounds was performed to quantify granulation tissue (thickness, quality) and angiogenesis (number of blood vessels per mm ). The expression of extracellular matrix proteins (collagen types I/III/IV, fibronectin 1, elastin), inflammatory cytokines (MIF, MIF-2, IL-6, TNF-α), myofibroblast differentiation (α-SMA) and macrophage polarization (CD11c, CD301b) in the incisional wounds were evaluated by RT-qPCR and by immunohistochemistry. There was a marked delay of wound closure in the HFD group with a decrease in granulation tissue quality and thickness. Additionally, inflammatory cytokines (MIF, IL-6, TNF-α) were significantly up-regulated in HFD- when compared to RD-fed mice measured at day 3. By contrast, MIF-2 and blood vessel expression were significantly reduced in the HFD animals, starting at day 1. No significant changes were observed in macrophage polarization, collagen expression, and levels of TGF-β1 and PDGF-A. Our findings support that an early exposition to HFD resulted in juvenile obesity in mice with impaired wound repair mechanisms, which may be used as a murine model for obesity-related studies in the future.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms242417299