Loading…

PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices

A novel PolSAR image speckle reduction algorithm based on a new definition of similarity coefficient is proposed in this paper. Pixels in image are firstly classified into three types by threshold segmentation which is calculated with the similarity features. Then, weighted filtering is applied on t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2019, Vol.7, p.136986-136994
Main Authors: Han, Ping, Dong, Fei, Jia, Kun, Han, Binbin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553
cites cdi_FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553
container_end_page 136994
container_issue
container_start_page 136986
container_title IEEE access
container_volume 7
creator Han, Ping
Dong, Fei
Jia, Kun
Han, Binbin
description A novel PolSAR image speckle reduction algorithm based on a new definition of similarity coefficient is proposed in this paper. Pixels in image are firstly classified into three types by threshold segmentation which is calculated with the similarity features. Then, weighted filtering is applied on the pixels selected according to their types, power features and similarity properties. Experimental results with measured data collected by NASA/JPL AIRSAR system show that the proposed method is more effective than Lee Filter not only in speckle suppression but also in polarimetric properties and structure feature preservation.
doi_str_mv 10.1109/ACCESS.2019.2941223
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fe0d2082735e4618936c6db2aa7557a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8836524</ieee_id><doaj_id>oai_doaj_org_article_fe0d2082735e4618936c6db2aa7557a1</doaj_id><sourcerecordid>2455600503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553</originalsourceid><addsrcrecordid>eNpNUU1LJDEQbWQXFPUXeAl4ntl8dNLp49j4MeCi2Os5lElFM_ZMxqQHmX-_0RaxLlU83ntVxauqM0bnjNH2z6LrLvt-zilr57ytGefioDriTLUzIYX69WM-rE5zXtFSukCyOape7uPQLx7Icg3PSPot2tcByQO6nR1D3JALyOhIGboBcg4-WPjEoyd9WIcBUhj35Aph3CXM5ALHd8TCji-YcGP35C-MKVjMJ9VvD0PG069-XD1eXf7rbma3d9fLbnE7szXV48yhaGjNUFAK0ksJjnIvUGnlHeq6sbym3CmBSJvWKycAvOaufOikqKUUx9Vy8nURVmabwhrS3kQI5hOI6dlAGoMd0HikjlPNGyGxVky3QlnlnjhAI2UDrHidT17bFN92mEeziru0KecbXnYpSiUVhSUmlk0x54T-eyuj5iMhMyVkPhIyXwkV1dmkCoj4rdBaKMlr8R8iu4ue</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455600503</pqid></control><display><type>article</type><title>PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices</title><source>IEEE Xplore Open Access Journals</source><creator>Han, Ping ; Dong, Fei ; Jia, Kun ; Han, Binbin</creator><creatorcontrib>Han, Ping ; Dong, Fei ; Jia, Kun ; Han, Binbin</creatorcontrib><description>A novel PolSAR image speckle reduction algorithm based on a new definition of similarity coefficient is proposed in this paper. Pixels in image are firstly classified into three types by threshold segmentation which is calculated with the similarity features. Then, weighted filtering is applied on the pixels selected according to their types, power features and similarity properties. Experimental results with measured data collected by NASA/JPL AIRSAR system show that the proposed method is more effective than Lee Filter not only in speckle suppression but also in polarimetric properties and structure feature preservation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2941223</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Coherence ; Covariance matrices ; Image classification ; Image segmentation ; Lee Filter ; Mathematical model ; Matrix decomposition ; pixel classification ; Pixels ; Polarimetry ; PolSAR image ; Reduction ; similarity coefficient ; Speckle ; speckle reduction</subject><ispartof>IEEE access, 2019, Vol.7, p.136986-136994</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553</citedby><cites>FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553</cites><orcidid>0000-0001-5928-064X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8836524$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Han, Ping</creatorcontrib><creatorcontrib>Dong, Fei</creatorcontrib><creatorcontrib>Jia, Kun</creatorcontrib><creatorcontrib>Han, Binbin</creatorcontrib><title>PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices</title><title>IEEE access</title><addtitle>Access</addtitle><description>A novel PolSAR image speckle reduction algorithm based on a new definition of similarity coefficient is proposed in this paper. Pixels in image are firstly classified into three types by threshold segmentation which is calculated with the similarity features. Then, weighted filtering is applied on the pixels selected according to their types, power features and similarity properties. Experimental results with measured data collected by NASA/JPL AIRSAR system show that the proposed method is more effective than Lee Filter not only in speckle suppression but also in polarimetric properties and structure feature preservation.</description><subject>Algorithms</subject><subject>Coherence</subject><subject>Covariance matrices</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Lee Filter</subject><subject>Mathematical model</subject><subject>Matrix decomposition</subject><subject>pixel classification</subject><subject>Pixels</subject><subject>Polarimetry</subject><subject>PolSAR image</subject><subject>Reduction</subject><subject>similarity coefficient</subject><subject>Speckle</subject><subject>speckle reduction</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LJDEQbWQXFPUXeAl4ntl8dNLp49j4MeCi2Os5lElFM_ZMxqQHmX-_0RaxLlU83ntVxauqM0bnjNH2z6LrLvt-zilr57ytGefioDriTLUzIYX69WM-rE5zXtFSukCyOape7uPQLx7Icg3PSPot2tcByQO6nR1D3JALyOhIGboBcg4-WPjEoyd9WIcBUhj35Aph3CXM5ALHd8TCji-YcGP35C-MKVjMJ9VvD0PG069-XD1eXf7rbma3d9fLbnE7szXV48yhaGjNUFAK0ksJjnIvUGnlHeq6sbym3CmBSJvWKycAvOaufOikqKUUx9Vy8nURVmabwhrS3kQI5hOI6dlAGoMd0HikjlPNGyGxVky3QlnlnjhAI2UDrHidT17bFN92mEeziru0KecbXnYpSiUVhSUmlk0x54T-eyuj5iMhMyVkPhIyXwkV1dmkCoj4rdBaKMlr8R8iu4ue</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Han, Ping</creator><creator>Dong, Fei</creator><creator>Jia, Kun</creator><creator>Han, Binbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5928-064X</orcidid></search><sort><creationdate>2019</creationdate><title>PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices</title><author>Han, Ping ; Dong, Fei ; Jia, Kun ; Han, Binbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Coherence</topic><topic>Covariance matrices</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Lee Filter</topic><topic>Mathematical model</topic><topic>Matrix decomposition</topic><topic>pixel classification</topic><topic>Pixels</topic><topic>Polarimetry</topic><topic>PolSAR image</topic><topic>Reduction</topic><topic>similarity coefficient</topic><topic>Speckle</topic><topic>speckle reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Ping</creatorcontrib><creatorcontrib>Dong, Fei</creatorcontrib><creatorcontrib>Jia, Kun</creatorcontrib><creatorcontrib>Han, Binbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Ping</au><au>Dong, Fei</au><au>Jia, Kun</au><au>Han, Binbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>136986</spage><epage>136994</epage><pages>136986-136994</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A novel PolSAR image speckle reduction algorithm based on a new definition of similarity coefficient is proposed in this paper. Pixels in image are firstly classified into three types by threshold segmentation which is calculated with the similarity features. Then, weighted filtering is applied on the pixels selected according to their types, power features and similarity properties. Experimental results with measured data collected by NASA/JPL AIRSAR system show that the proposed method is more effective than Lee Filter not only in speckle suppression but also in polarimetric properties and structure feature preservation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2941223</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5928-064X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.136986-136994
issn 2169-3536
2169-3536
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fe0d2082735e4618936c6db2aa7557a1
source IEEE Xplore Open Access Journals
subjects Algorithms
Coherence
Covariance matrices
Image classification
Image segmentation
Lee Filter
Mathematical model
Matrix decomposition
pixel classification
Pixels
Polarimetry
PolSAR image
Reduction
similarity coefficient
Speckle
speckle reduction
title PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PolSAR%20Image%20Speckle%20Reduction%20Based%20on%20Classification%20of%20Similarity%20Features%20Between%20Coherency%20Matrices&rft.jtitle=IEEE%20access&rft.au=Han,%20Ping&rft.date=2019&rft.volume=7&rft.spage=136986&rft.epage=136994&rft.pages=136986-136994&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2941223&rft_dat=%3Cproquest_doaj_%3E2455600503%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455600503&rft_id=info:pmid/&rft_ieee_id=8836524&rfr_iscdi=true