Loading…
PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices
A novel PolSAR image speckle reduction algorithm based on a new definition of similarity coefficient is proposed in this paper. Pixels in image are firstly classified into three types by threshold segmentation which is calculated with the similarity features. Then, weighted filtering is applied on t...
Saved in:
Published in: | IEEE access 2019, Vol.7, p.136986-136994 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553 |
container_end_page | 136994 |
container_issue | |
container_start_page | 136986 |
container_title | IEEE access |
container_volume | 7 |
creator | Han, Ping Dong, Fei Jia, Kun Han, Binbin |
description | A novel PolSAR image speckle reduction algorithm based on a new definition of similarity coefficient is proposed in this paper. Pixels in image are firstly classified into three types by threshold segmentation which is calculated with the similarity features. Then, weighted filtering is applied on the pixels selected according to their types, power features and similarity properties. Experimental results with measured data collected by NASA/JPL AIRSAR system show that the proposed method is more effective than Lee Filter not only in speckle suppression but also in polarimetric properties and structure feature preservation. |
doi_str_mv | 10.1109/ACCESS.2019.2941223 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fe0d2082735e4618936c6db2aa7557a1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8836524</ieee_id><doaj_id>oai_doaj_org_article_fe0d2082735e4618936c6db2aa7557a1</doaj_id><sourcerecordid>2455600503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553</originalsourceid><addsrcrecordid>eNpNUU1LJDEQbWQXFPUXeAl4ntl8dNLp49j4MeCi2Os5lElFM_ZMxqQHmX-_0RaxLlU83ntVxauqM0bnjNH2z6LrLvt-zilr57ytGefioDriTLUzIYX69WM-rE5zXtFSukCyOape7uPQLx7Icg3PSPot2tcByQO6nR1D3JALyOhIGboBcg4-WPjEoyd9WIcBUhj35Aph3CXM5ALHd8TCji-YcGP35C-MKVjMJ9VvD0PG069-XD1eXf7rbma3d9fLbnE7szXV48yhaGjNUFAK0ksJjnIvUGnlHeq6sbym3CmBSJvWKycAvOaufOikqKUUx9Vy8nURVmabwhrS3kQI5hOI6dlAGoMd0HikjlPNGyGxVky3QlnlnjhAI2UDrHidT17bFN92mEeziru0KecbXnYpSiUVhSUmlk0x54T-eyuj5iMhMyVkPhIyXwkV1dmkCoj4rdBaKMlr8R8iu4ue</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455600503</pqid></control><display><type>article</type><title>PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices</title><source>IEEE Xplore Open Access Journals</source><creator>Han, Ping ; Dong, Fei ; Jia, Kun ; Han, Binbin</creator><creatorcontrib>Han, Ping ; Dong, Fei ; Jia, Kun ; Han, Binbin</creatorcontrib><description>A novel PolSAR image speckle reduction algorithm based on a new definition of similarity coefficient is proposed in this paper. Pixels in image are firstly classified into three types by threshold segmentation which is calculated with the similarity features. Then, weighted filtering is applied on the pixels selected according to their types, power features and similarity properties. Experimental results with measured data collected by NASA/JPL AIRSAR system show that the proposed method is more effective than Lee Filter not only in speckle suppression but also in polarimetric properties and structure feature preservation.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2941223</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Coherence ; Covariance matrices ; Image classification ; Image segmentation ; Lee Filter ; Mathematical model ; Matrix decomposition ; pixel classification ; Pixels ; Polarimetry ; PolSAR image ; Reduction ; similarity coefficient ; Speckle ; speckle reduction</subject><ispartof>IEEE access, 2019, Vol.7, p.136986-136994</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553</citedby><cites>FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553</cites><orcidid>0000-0001-5928-064X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8836524$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Han, Ping</creatorcontrib><creatorcontrib>Dong, Fei</creatorcontrib><creatorcontrib>Jia, Kun</creatorcontrib><creatorcontrib>Han, Binbin</creatorcontrib><title>PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices</title><title>IEEE access</title><addtitle>Access</addtitle><description>A novel PolSAR image speckle reduction algorithm based on a new definition of similarity coefficient is proposed in this paper. Pixels in image are firstly classified into three types by threshold segmentation which is calculated with the similarity features. Then, weighted filtering is applied on the pixels selected according to their types, power features and similarity properties. Experimental results with measured data collected by NASA/JPL AIRSAR system show that the proposed method is more effective than Lee Filter not only in speckle suppression but also in polarimetric properties and structure feature preservation.</description><subject>Algorithms</subject><subject>Coherence</subject><subject>Covariance matrices</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Lee Filter</subject><subject>Mathematical model</subject><subject>Matrix decomposition</subject><subject>pixel classification</subject><subject>Pixels</subject><subject>Polarimetry</subject><subject>PolSAR image</subject><subject>Reduction</subject><subject>similarity coefficient</subject><subject>Speckle</subject><subject>speckle reduction</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LJDEQbWQXFPUXeAl4ntl8dNLp49j4MeCi2Os5lElFM_ZMxqQHmX-_0RaxLlU83ntVxauqM0bnjNH2z6LrLvt-zilr57ytGefioDriTLUzIYX69WM-rE5zXtFSukCyOape7uPQLx7Icg3PSPot2tcByQO6nR1D3JALyOhIGboBcg4-WPjEoyd9WIcBUhj35Aph3CXM5ALHd8TCji-YcGP35C-MKVjMJ9VvD0PG069-XD1eXf7rbma3d9fLbnE7szXV48yhaGjNUFAK0ksJjnIvUGnlHeq6sbym3CmBSJvWKycAvOaufOikqKUUx9Vy8nURVmabwhrS3kQI5hOI6dlAGoMd0HikjlPNGyGxVky3QlnlnjhAI2UDrHidT17bFN92mEeziru0KecbXnYpSiUVhSUmlk0x54T-eyuj5iMhMyVkPhIyXwkV1dmkCoj4rdBaKMlr8R8iu4ue</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Han, Ping</creator><creator>Dong, Fei</creator><creator>Jia, Kun</creator><creator>Han, Binbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5928-064X</orcidid></search><sort><creationdate>2019</creationdate><title>PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices</title><author>Han, Ping ; Dong, Fei ; Jia, Kun ; Han, Binbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Coherence</topic><topic>Covariance matrices</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Lee Filter</topic><topic>Mathematical model</topic><topic>Matrix decomposition</topic><topic>pixel classification</topic><topic>Pixels</topic><topic>Polarimetry</topic><topic>PolSAR image</topic><topic>Reduction</topic><topic>similarity coefficient</topic><topic>Speckle</topic><topic>speckle reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Ping</creatorcontrib><creatorcontrib>Dong, Fei</creatorcontrib><creatorcontrib>Jia, Kun</creatorcontrib><creatorcontrib>Han, Binbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Ping</au><au>Dong, Fei</au><au>Jia, Kun</au><au>Han, Binbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>136986</spage><epage>136994</epage><pages>136986-136994</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A novel PolSAR image speckle reduction algorithm based on a new definition of similarity coefficient is proposed in this paper. Pixels in image are firstly classified into three types by threshold segmentation which is calculated with the similarity features. Then, weighted filtering is applied on the pixels selected according to their types, power features and similarity properties. Experimental results with measured data collected by NASA/JPL AIRSAR system show that the proposed method is more effective than Lee Filter not only in speckle suppression but also in polarimetric properties and structure feature preservation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2941223</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5928-064X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.136986-136994 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fe0d2082735e4618936c6db2aa7557a1 |
source | IEEE Xplore Open Access Journals |
subjects | Algorithms Coherence Covariance matrices Image classification Image segmentation Lee Filter Mathematical model Matrix decomposition pixel classification Pixels Polarimetry PolSAR image Reduction similarity coefficient Speckle speckle reduction |
title | PolSAR Image Speckle Reduction Based on Classification of Similarity Features Between Coherency Matrices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A56%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PolSAR%20Image%20Speckle%20Reduction%20Based%20on%20Classification%20of%20Similarity%20Features%20Between%20Coherency%20Matrices&rft.jtitle=IEEE%20access&rft.au=Han,%20Ping&rft.date=2019&rft.volume=7&rft.spage=136986&rft.epage=136994&rft.pages=136986-136994&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2941223&rft_dat=%3Cproquest_doaj_%3E2455600503%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-de37041e300a5f55ad02f3e686fde847c2402d63ee079f6d3aaf82d216d534553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2455600503&rft_id=info:pmid/&rft_ieee_id=8836524&rfr_iscdi=true |