Loading…
Intramammary rapamycin administration to calves induces epithelial stem cell self-renewal and latent cell proliferation and milk protein expression
Mammary epithelial stem cells differentiate to create the basal and luminal layers of the gland. Inducing the number of differentiating bovine mammary stem cells may provide compensating populations for the milk-producing cells that die during lactation. Inhibition of mTOR activity by rapamycin sign...
Saved in:
Published in: | PloS one 2022-01, Vol.17 (6), p.e0269505 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mammary epithelial stem cells differentiate to create the basal and luminal layers of the gland. Inducing the number of differentiating bovine mammary stem cells may provide compensating populations for the milk-producing cells that die during lactation. Inhibition of mTOR activity by rapamycin signals self-renewal of intestinal stem cells, with similar consequences in the mouse mammary gland and in bovine mammary implants maintained in mice. The implementation of these results in farm animals for better mammary development and production was studied in 3-month-old calves. mTOR activity decreased by ~50% in mammary epithelial cells subjected to 3-week rapamycin administration, with no negative consequences on mammary morphology or β-casein expression. Subsequently, stem cell self-renewal was induced, reflected by a higher propagation rate of cultures from rapamycin-treated glands compared to respective controls and higher expression of selected markers. Followed by 4-day estrogen and progesterone administration, rapamycin significantly induced proliferation rate. Higher numbers of basal and luminal PCNA+ cells were detected in small ducts near the elongating sites as compared to large ducts, in which only luminal cells were affected. Rapamycin administration resulted in induction of individual milk protein genes' expression, which was negatively correlated to their endogenous levels. The inductive effect of rapamycin on luminal cell number was confirmed in organoid cultures, but milk protein expression decreased, probably due to lack of oscillation in rapamycin levels. In conclusion, intramammary rapamycin administration is an effective methodology to reduce mTOR activity in bovine mammary epithelial cells and consequently, induce stem cell self-renewal. The latent positive effect of rapamycin on epithelial cell proliferation and its potential to improve milk protein expression in calves may have beneficial implications for mature cows. |
---|---|
ISSN: | 1932-6203 |
DOI: | 10.1371/journal.pone.0269505 |