Loading…

Optimization analysis of solid oxide fuel cells with ceria-based single cells using computational fluid dynamics

The SOFC simulations in this research are conducted at temperatures of 600°C, 700°C, and 800°C, focusing on the Ni-SDC anode, SDC electrolyte, and LSCF-SDC materials used in the SOFC single cell. Initially, the single-cell model is created using CAD software, followed by the development of a computa...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2024-01, Vol.516, p.1010
Main Authors: Kang Huai, Tan, Mohd Azami, Mohammad Saifulddin, Abd Rahman, Hamimah, Abd Rahman, Nurul Farhana, Tukimon, Mohd Faizal, Jaidi, Zol Hafizi, Yusop, Umira Asyikin
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2270-2147d8ec75fc8ad2db5810caf42bccce8bb08827405d400e778addf84e9309433
container_end_page
container_issue
container_start_page 1010
container_title E3S web of conferences
container_volume 516
creator Kang Huai, Tan
Mohd Azami, Mohammad Saifulddin
Abd Rahman, Hamimah
Abd Rahman, Nurul Farhana
Tukimon, Mohd Faizal
Jaidi, Zol Hafizi
Yusop, Umira Asyikin
description The SOFC simulations in this research are conducted at temperatures of 600°C, 700°C, and 800°C, focusing on the Ni-SDC anode, SDC electrolyte, and LSCF-SDC materials used in the SOFC single cell. Initially, the single-cell model is created using CAD software, followed by the development of a computational fluid dynamics (CFD) model with the requisite material properties. The study then proceeds to simulate temperature distribution and cell performance for various supported SOFC stack models (electrode and electrolyte supported) at intermediate temperatures. Subsequently, the study examines cell performance with varying thicknesses of the anode, electrolyte, and cathode components within the specific supported single cell. In summary, the CFD results indicate that cathode-supported SOFCs exhibit higher power density, specifically 938.28 mW/cm 2 at 800°C, surpassing anode-supported and electrolyte-supported configurations. The power density reaches 1495.40 mW/cm 2 when the single-cell layer thickness is 0.35 mm for the cathode, 0.02 mm for the anode, and 0.01 mm for the electrolyte. However, electrolyte-supported single cells display the lowest temperature difference, at 0.028% at 800 o C The simulation results demonstrate that reducing the thicknesses of all electrodes and the electrolyte leads to increased current density, power density, and temperature distribution difference.
doi_str_mv 10.1051/e3sconf/202451601010
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fe291e3a13a6436ab7480baeacc43164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fe291e3a13a6436ab7480baeacc43164</doaj_id><sourcerecordid>oai_doaj_org_article_fe291e3a13a6436ab7480baeacc43164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2270-2147d8ec75fc8ad2db5810caf42bccce8bb08827405d400e778addf84e9309433</originalsourceid><addsrcrecordid>eNpNkctqwzAQRUVpoSHNH3ShH3AzethWliX0EQhk067NWI9UQbaM5dCmX1_nQQmzmHvvDGdzCXlk8MQgZ3Mrko6tm3PgMmcFsHFuyITzoswYl_z2St-TWUo7AGA8VxLkhHSbbvCN_8XBx5Zii-GQfKLR0RSDNzT-eGOp29tAtQ0h0W8_fI2y95jVmKyhybfbYC_X_dFRHZtuP5yQGKgL-xFkDi02XqcHcucwJDu77Cn5fH35WL5n683bavm8zjTnJWScydIoq8vcaYWGmzpXDDQ6yWuttVV1DUrxUkJuJIAty_HLOCXtQsBCCjElqzPXRNxVXe8b7A9VRF-dgthvK-wHr4OtnOULZgUygYUUBdalVFCjRa2lYGM0JfLM0n1Mqbfun8egOpZQXUqorksQf-7gfgE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization analysis of solid oxide fuel cells with ceria-based single cells using computational fluid dynamics</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Kang Huai, Tan ; Mohd Azami, Mohammad Saifulddin ; Abd Rahman, Hamimah ; Abd Rahman, Nurul Farhana ; Tukimon, Mohd Faizal ; Jaidi, Zol Hafizi ; Yusop, Umira Asyikin</creator><contributor>Abdul Jalil, A. ; Che Jusoh, N.W. ; Hassan, N.S. ; Bahari, M.</contributor><creatorcontrib>Kang Huai, Tan ; Mohd Azami, Mohammad Saifulddin ; Abd Rahman, Hamimah ; Abd Rahman, Nurul Farhana ; Tukimon, Mohd Faizal ; Jaidi, Zol Hafizi ; Yusop, Umira Asyikin ; Abdul Jalil, A. ; Che Jusoh, N.W. ; Hassan, N.S. ; Bahari, M.</creatorcontrib><description>The SOFC simulations in this research are conducted at temperatures of 600°C, 700°C, and 800°C, focusing on the Ni-SDC anode, SDC electrolyte, and LSCF-SDC materials used in the SOFC single cell. Initially, the single-cell model is created using CAD software, followed by the development of a computational fluid dynamics (CFD) model with the requisite material properties. The study then proceeds to simulate temperature distribution and cell performance for various supported SOFC stack models (electrode and electrolyte supported) at intermediate temperatures. Subsequently, the study examines cell performance with varying thicknesses of the anode, electrolyte, and cathode components within the specific supported single cell. In summary, the CFD results indicate that cathode-supported SOFCs exhibit higher power density, specifically 938.28 mW/cm 2 at 800°C, surpassing anode-supported and electrolyte-supported configurations. The power density reaches 1495.40 mW/cm 2 when the single-cell layer thickness is 0.35 mm for the cathode, 0.02 mm for the anode, and 0.01 mm for the electrolyte. However, electrolyte-supported single cells display the lowest temperature difference, at 0.028% at 800 o C The simulation results demonstrate that reducing the thicknesses of all electrodes and the electrolyte leads to increased current density, power density, and temperature distribution difference.</description><identifier>ISSN: 2267-1242</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202451601010</identifier><language>eng</language><publisher>EDP Sciences</publisher><ispartof>E3S web of conferences, 2024-01, Vol.516, p.1010</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2270-2147d8ec75fc8ad2db5810caf42bccce8bb08827405d400e778addf84e9309433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Abdul Jalil, A.</contributor><contributor>Che Jusoh, N.W.</contributor><contributor>Hassan, N.S.</contributor><contributor>Bahari, M.</contributor><creatorcontrib>Kang Huai, Tan</creatorcontrib><creatorcontrib>Mohd Azami, Mohammad Saifulddin</creatorcontrib><creatorcontrib>Abd Rahman, Hamimah</creatorcontrib><creatorcontrib>Abd Rahman, Nurul Farhana</creatorcontrib><creatorcontrib>Tukimon, Mohd Faizal</creatorcontrib><creatorcontrib>Jaidi, Zol Hafizi</creatorcontrib><creatorcontrib>Yusop, Umira Asyikin</creatorcontrib><title>Optimization analysis of solid oxide fuel cells with ceria-based single cells using computational fluid dynamics</title><title>E3S web of conferences</title><description>The SOFC simulations in this research are conducted at temperatures of 600°C, 700°C, and 800°C, focusing on the Ni-SDC anode, SDC electrolyte, and LSCF-SDC materials used in the SOFC single cell. Initially, the single-cell model is created using CAD software, followed by the development of a computational fluid dynamics (CFD) model with the requisite material properties. The study then proceeds to simulate temperature distribution and cell performance for various supported SOFC stack models (electrode and electrolyte supported) at intermediate temperatures. Subsequently, the study examines cell performance with varying thicknesses of the anode, electrolyte, and cathode components within the specific supported single cell. In summary, the CFD results indicate that cathode-supported SOFCs exhibit higher power density, specifically 938.28 mW/cm 2 at 800°C, surpassing anode-supported and electrolyte-supported configurations. The power density reaches 1495.40 mW/cm 2 when the single-cell layer thickness is 0.35 mm for the cathode, 0.02 mm for the anode, and 0.01 mm for the electrolyte. However, electrolyte-supported single cells display the lowest temperature difference, at 0.028% at 800 o C The simulation results demonstrate that reducing the thicknesses of all electrodes and the electrolyte leads to increased current density, power density, and temperature distribution difference.</description><issn>2267-1242</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkctqwzAQRUVpoSHNH3ShH3AzethWliX0EQhk067NWI9UQbaM5dCmX1_nQQmzmHvvDGdzCXlk8MQgZ3Mrko6tm3PgMmcFsHFuyITzoswYl_z2St-TWUo7AGA8VxLkhHSbbvCN_8XBx5Zii-GQfKLR0RSDNzT-eGOp29tAtQ0h0W8_fI2y95jVmKyhybfbYC_X_dFRHZtuP5yQGKgL-xFkDi02XqcHcucwJDu77Cn5fH35WL5n683bavm8zjTnJWScydIoq8vcaYWGmzpXDDQ6yWuttVV1DUrxUkJuJIAty_HLOCXtQsBCCjElqzPXRNxVXe8b7A9VRF-dgthvK-wHr4OtnOULZgUygYUUBdalVFCjRa2lYGM0JfLM0n1Mqbfun8egOpZQXUqorksQf-7gfgE</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kang Huai, Tan</creator><creator>Mohd Azami, Mohammad Saifulddin</creator><creator>Abd Rahman, Hamimah</creator><creator>Abd Rahman, Nurul Farhana</creator><creator>Tukimon, Mohd Faizal</creator><creator>Jaidi, Zol Hafizi</creator><creator>Yusop, Umira Asyikin</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20240101</creationdate><title>Optimization analysis of solid oxide fuel cells with ceria-based single cells using computational fluid dynamics</title><author>Kang Huai, Tan ; Mohd Azami, Mohammad Saifulddin ; Abd Rahman, Hamimah ; Abd Rahman, Nurul Farhana ; Tukimon, Mohd Faizal ; Jaidi, Zol Hafizi ; Yusop, Umira Asyikin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2270-2147d8ec75fc8ad2db5810caf42bccce8bb08827405d400e778addf84e9309433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang Huai, Tan</creatorcontrib><creatorcontrib>Mohd Azami, Mohammad Saifulddin</creatorcontrib><creatorcontrib>Abd Rahman, Hamimah</creatorcontrib><creatorcontrib>Abd Rahman, Nurul Farhana</creatorcontrib><creatorcontrib>Tukimon, Mohd Faizal</creatorcontrib><creatorcontrib>Jaidi, Zol Hafizi</creatorcontrib><creatorcontrib>Yusop, Umira Asyikin</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang Huai, Tan</au><au>Mohd Azami, Mohammad Saifulddin</au><au>Abd Rahman, Hamimah</au><au>Abd Rahman, Nurul Farhana</au><au>Tukimon, Mohd Faizal</au><au>Jaidi, Zol Hafizi</au><au>Yusop, Umira Asyikin</au><au>Abdul Jalil, A.</au><au>Che Jusoh, N.W.</au><au>Hassan, N.S.</au><au>Bahari, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization analysis of solid oxide fuel cells with ceria-based single cells using computational fluid dynamics</atitle><jtitle>E3S web of conferences</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>516</volume><spage>1010</spage><pages>1010-</pages><issn>2267-1242</issn><eissn>2267-1242</eissn><abstract>The SOFC simulations in this research are conducted at temperatures of 600°C, 700°C, and 800°C, focusing on the Ni-SDC anode, SDC electrolyte, and LSCF-SDC materials used in the SOFC single cell. Initially, the single-cell model is created using CAD software, followed by the development of a computational fluid dynamics (CFD) model with the requisite material properties. The study then proceeds to simulate temperature distribution and cell performance for various supported SOFC stack models (electrode and electrolyte supported) at intermediate temperatures. Subsequently, the study examines cell performance with varying thicknesses of the anode, electrolyte, and cathode components within the specific supported single cell. In summary, the CFD results indicate that cathode-supported SOFCs exhibit higher power density, specifically 938.28 mW/cm 2 at 800°C, surpassing anode-supported and electrolyte-supported configurations. The power density reaches 1495.40 mW/cm 2 when the single-cell layer thickness is 0.35 mm for the cathode, 0.02 mm for the anode, and 0.01 mm for the electrolyte. However, electrolyte-supported single cells display the lowest temperature difference, at 0.028% at 800 o C The simulation results demonstrate that reducing the thicknesses of all electrodes and the electrolyte leads to increased current density, power density, and temperature distribution difference.</abstract><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202451601010</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2267-1242
ispartof E3S web of conferences, 2024-01, Vol.516, p.1010
issn 2267-1242
2267-1242
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fe291e3a13a6436ab7480baeacc43164
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
title Optimization analysis of solid oxide fuel cells with ceria-based single cells using computational fluid dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20analysis%20of%20solid%20oxide%20fuel%20cells%20with%20ceria-based%20single%20cells%20using%20computational%20fluid%20dynamics&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Kang%20Huai,%20Tan&rft.date=2024-01-01&rft.volume=516&rft.spage=1010&rft.pages=1010-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202451601010&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_fe291e3a13a6436ab7480baeacc43164%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2270-2147d8ec75fc8ad2db5810caf42bccce8bb08827405d400e778addf84e9309433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true