Loading…
Optimization analysis of solid oxide fuel cells with ceria-based single cells using computational fluid dynamics
The SOFC simulations in this research are conducted at temperatures of 600°C, 700°C, and 800°C, focusing on the Ni-SDC anode, SDC electrolyte, and LSCF-SDC materials used in the SOFC single cell. Initially, the single-cell model is created using CAD software, followed by the development of a computa...
Saved in:
Published in: | E3S web of conferences 2024-01, Vol.516, p.1010 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2270-2147d8ec75fc8ad2db5810caf42bccce8bb08827405d400e778addf84e9309433 |
container_end_page | |
container_issue | |
container_start_page | 1010 |
container_title | E3S web of conferences |
container_volume | 516 |
creator | Kang Huai, Tan Mohd Azami, Mohammad Saifulddin Abd Rahman, Hamimah Abd Rahman, Nurul Farhana Tukimon, Mohd Faizal Jaidi, Zol Hafizi Yusop, Umira Asyikin |
description | The SOFC simulations in this research are conducted at temperatures of 600°C, 700°C, and 800°C, focusing on the Ni-SDC anode, SDC electrolyte, and LSCF-SDC materials used in the SOFC single cell. Initially, the single-cell model is created using CAD software, followed by the development of a computational fluid dynamics (CFD) model with the requisite material properties. The study then proceeds to simulate temperature distribution and cell performance for various supported SOFC stack models (electrode and electrolyte supported) at intermediate temperatures. Subsequently, the study examines cell performance with varying thicknesses of the anode, electrolyte, and cathode components within the specific supported single cell. In summary, the CFD results indicate that cathode-supported SOFCs exhibit higher power density, specifically 938.28 mW/cm
2
at 800°C, surpassing anode-supported and electrolyte-supported configurations. The power density reaches 1495.40 mW/cm
2
when the single-cell layer thickness is 0.35 mm for the cathode, 0.02 mm for the anode, and 0.01 mm for the electrolyte. However, electrolyte-supported single cells display the lowest temperature difference, at 0.028% at 800
o
C The simulation results demonstrate that reducing the thicknesses of all electrodes and the electrolyte leads to increased current density, power density, and temperature distribution difference. |
doi_str_mv | 10.1051/e3sconf/202451601010 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fe291e3a13a6436ab7480baeacc43164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fe291e3a13a6436ab7480baeacc43164</doaj_id><sourcerecordid>oai_doaj_org_article_fe291e3a13a6436ab7480baeacc43164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2270-2147d8ec75fc8ad2db5810caf42bccce8bb08827405d400e778addf84e9309433</originalsourceid><addsrcrecordid>eNpNkctqwzAQRUVpoSHNH3ShH3AzethWliX0EQhk067NWI9UQbaM5dCmX1_nQQmzmHvvDGdzCXlk8MQgZ3Mrko6tm3PgMmcFsHFuyITzoswYl_z2St-TWUo7AGA8VxLkhHSbbvCN_8XBx5Zii-GQfKLR0RSDNzT-eGOp29tAtQ0h0W8_fI2y95jVmKyhybfbYC_X_dFRHZtuP5yQGKgL-xFkDi02XqcHcucwJDu77Cn5fH35WL5n683bavm8zjTnJWScydIoq8vcaYWGmzpXDDQ6yWuttVV1DUrxUkJuJIAty_HLOCXtQsBCCjElqzPXRNxVXe8b7A9VRF-dgthvK-wHr4OtnOULZgUygYUUBdalVFCjRa2lYGM0JfLM0n1Mqbfun8egOpZQXUqorksQf-7gfgE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization analysis of solid oxide fuel cells with ceria-based single cells using computational fluid dynamics</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Kang Huai, Tan ; Mohd Azami, Mohammad Saifulddin ; Abd Rahman, Hamimah ; Abd Rahman, Nurul Farhana ; Tukimon, Mohd Faizal ; Jaidi, Zol Hafizi ; Yusop, Umira Asyikin</creator><contributor>Abdul Jalil, A. ; Che Jusoh, N.W. ; Hassan, N.S. ; Bahari, M.</contributor><creatorcontrib>Kang Huai, Tan ; Mohd Azami, Mohammad Saifulddin ; Abd Rahman, Hamimah ; Abd Rahman, Nurul Farhana ; Tukimon, Mohd Faizal ; Jaidi, Zol Hafizi ; Yusop, Umira Asyikin ; Abdul Jalil, A. ; Che Jusoh, N.W. ; Hassan, N.S. ; Bahari, M.</creatorcontrib><description>The SOFC simulations in this research are conducted at temperatures of 600°C, 700°C, and 800°C, focusing on the Ni-SDC anode, SDC electrolyte, and LSCF-SDC materials used in the SOFC single cell. Initially, the single-cell model is created using CAD software, followed by the development of a computational fluid dynamics (CFD) model with the requisite material properties. The study then proceeds to simulate temperature distribution and cell performance for various supported SOFC stack models (electrode and electrolyte supported) at intermediate temperatures. Subsequently, the study examines cell performance with varying thicknesses of the anode, electrolyte, and cathode components within the specific supported single cell. In summary, the CFD results indicate that cathode-supported SOFCs exhibit higher power density, specifically 938.28 mW/cm
2
at 800°C, surpassing anode-supported and electrolyte-supported configurations. The power density reaches 1495.40 mW/cm
2
when the single-cell layer thickness is 0.35 mm for the cathode, 0.02 mm for the anode, and 0.01 mm for the electrolyte. However, electrolyte-supported single cells display the lowest temperature difference, at 0.028% at 800
o
C The simulation results demonstrate that reducing the thicknesses of all electrodes and the electrolyte leads to increased current density, power density, and temperature distribution difference.</description><identifier>ISSN: 2267-1242</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/202451601010</identifier><language>eng</language><publisher>EDP Sciences</publisher><ispartof>E3S web of conferences, 2024-01, Vol.516, p.1010</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2270-2147d8ec75fc8ad2db5810caf42bccce8bb08827405d400e778addf84e9309433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Abdul Jalil, A.</contributor><contributor>Che Jusoh, N.W.</contributor><contributor>Hassan, N.S.</contributor><contributor>Bahari, M.</contributor><creatorcontrib>Kang Huai, Tan</creatorcontrib><creatorcontrib>Mohd Azami, Mohammad Saifulddin</creatorcontrib><creatorcontrib>Abd Rahman, Hamimah</creatorcontrib><creatorcontrib>Abd Rahman, Nurul Farhana</creatorcontrib><creatorcontrib>Tukimon, Mohd Faizal</creatorcontrib><creatorcontrib>Jaidi, Zol Hafizi</creatorcontrib><creatorcontrib>Yusop, Umira Asyikin</creatorcontrib><title>Optimization analysis of solid oxide fuel cells with ceria-based single cells using computational fluid dynamics</title><title>E3S web of conferences</title><description>The SOFC simulations in this research are conducted at temperatures of 600°C, 700°C, and 800°C, focusing on the Ni-SDC anode, SDC electrolyte, and LSCF-SDC materials used in the SOFC single cell. Initially, the single-cell model is created using CAD software, followed by the development of a computational fluid dynamics (CFD) model with the requisite material properties. The study then proceeds to simulate temperature distribution and cell performance for various supported SOFC stack models (electrode and electrolyte supported) at intermediate temperatures. Subsequently, the study examines cell performance with varying thicknesses of the anode, electrolyte, and cathode components within the specific supported single cell. In summary, the CFD results indicate that cathode-supported SOFCs exhibit higher power density, specifically 938.28 mW/cm
2
at 800°C, surpassing anode-supported and electrolyte-supported configurations. The power density reaches 1495.40 mW/cm
2
when the single-cell layer thickness is 0.35 mm for the cathode, 0.02 mm for the anode, and 0.01 mm for the electrolyte. However, electrolyte-supported single cells display the lowest temperature difference, at 0.028% at 800
o
C The simulation results demonstrate that reducing the thicknesses of all electrodes and the electrolyte leads to increased current density, power density, and temperature distribution difference.</description><issn>2267-1242</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkctqwzAQRUVpoSHNH3ShH3AzethWliX0EQhk067NWI9UQbaM5dCmX1_nQQmzmHvvDGdzCXlk8MQgZ3Mrko6tm3PgMmcFsHFuyITzoswYl_z2St-TWUo7AGA8VxLkhHSbbvCN_8XBx5Zii-GQfKLR0RSDNzT-eGOp29tAtQ0h0W8_fI2y95jVmKyhybfbYC_X_dFRHZtuP5yQGKgL-xFkDi02XqcHcucwJDu77Cn5fH35WL5n683bavm8zjTnJWScydIoq8vcaYWGmzpXDDQ6yWuttVV1DUrxUkJuJIAty_HLOCXtQsBCCjElqzPXRNxVXe8b7A9VRF-dgthvK-wHr4OtnOULZgUygYUUBdalVFCjRa2lYGM0JfLM0n1Mqbfun8egOpZQXUqorksQf-7gfgE</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Kang Huai, Tan</creator><creator>Mohd Azami, Mohammad Saifulddin</creator><creator>Abd Rahman, Hamimah</creator><creator>Abd Rahman, Nurul Farhana</creator><creator>Tukimon, Mohd Faizal</creator><creator>Jaidi, Zol Hafizi</creator><creator>Yusop, Umira Asyikin</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20240101</creationdate><title>Optimization analysis of solid oxide fuel cells with ceria-based single cells using computational fluid dynamics</title><author>Kang Huai, Tan ; Mohd Azami, Mohammad Saifulddin ; Abd Rahman, Hamimah ; Abd Rahman, Nurul Farhana ; Tukimon, Mohd Faizal ; Jaidi, Zol Hafizi ; Yusop, Umira Asyikin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2270-2147d8ec75fc8ad2db5810caf42bccce8bb08827405d400e778addf84e9309433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang Huai, Tan</creatorcontrib><creatorcontrib>Mohd Azami, Mohammad Saifulddin</creatorcontrib><creatorcontrib>Abd Rahman, Hamimah</creatorcontrib><creatorcontrib>Abd Rahman, Nurul Farhana</creatorcontrib><creatorcontrib>Tukimon, Mohd Faizal</creatorcontrib><creatorcontrib>Jaidi, Zol Hafizi</creatorcontrib><creatorcontrib>Yusop, Umira Asyikin</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang Huai, Tan</au><au>Mohd Azami, Mohammad Saifulddin</au><au>Abd Rahman, Hamimah</au><au>Abd Rahman, Nurul Farhana</au><au>Tukimon, Mohd Faizal</au><au>Jaidi, Zol Hafizi</au><au>Yusop, Umira Asyikin</au><au>Abdul Jalil, A.</au><au>Che Jusoh, N.W.</au><au>Hassan, N.S.</au><au>Bahari, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization analysis of solid oxide fuel cells with ceria-based single cells using computational fluid dynamics</atitle><jtitle>E3S web of conferences</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>516</volume><spage>1010</spage><pages>1010-</pages><issn>2267-1242</issn><eissn>2267-1242</eissn><abstract>The SOFC simulations in this research are conducted at temperatures of 600°C, 700°C, and 800°C, focusing on the Ni-SDC anode, SDC electrolyte, and LSCF-SDC materials used in the SOFC single cell. Initially, the single-cell model is created using CAD software, followed by the development of a computational fluid dynamics (CFD) model with the requisite material properties. The study then proceeds to simulate temperature distribution and cell performance for various supported SOFC stack models (electrode and electrolyte supported) at intermediate temperatures. Subsequently, the study examines cell performance with varying thicknesses of the anode, electrolyte, and cathode components within the specific supported single cell. In summary, the CFD results indicate that cathode-supported SOFCs exhibit higher power density, specifically 938.28 mW/cm
2
at 800°C, surpassing anode-supported and electrolyte-supported configurations. The power density reaches 1495.40 mW/cm
2
when the single-cell layer thickness is 0.35 mm for the cathode, 0.02 mm for the anode, and 0.01 mm for the electrolyte. However, electrolyte-supported single cells display the lowest temperature difference, at 0.028% at 800
o
C The simulation results demonstrate that reducing the thicknesses of all electrodes and the electrolyte leads to increased current density, power density, and temperature distribution difference.</abstract><pub>EDP Sciences</pub><doi>10.1051/e3sconf/202451601010</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2267-1242 |
ispartof | E3S web of conferences, 2024-01, Vol.516, p.1010 |
issn | 2267-1242 2267-1242 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fe291e3a13a6436ab7480baeacc43164 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
title | Optimization analysis of solid oxide fuel cells with ceria-based single cells using computational fluid dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A00%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20analysis%20of%20solid%20oxide%20fuel%20cells%20with%20ceria-based%20single%20cells%20using%20computational%20fluid%20dynamics&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Kang%20Huai,%20Tan&rft.date=2024-01-01&rft.volume=516&rft.spage=1010&rft.pages=1010-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/202451601010&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_fe291e3a13a6436ab7480baeacc43164%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2270-2147d8ec75fc8ad2db5810caf42bccce8bb08827405d400e778addf84e9309433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |