Loading…
A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors
Background Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic beha...
Saved in:
Published in: | EJNMMI research 2021-08, Vol.11 (1), p.73-73, Article 73 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3 |
container_end_page | 73 |
container_issue | 1 |
container_start_page | 73 |
container_title | EJNMMI research |
container_volume | 11 |
creator | Siebinga, H. de Wit-van der Veen, B. J. Beijnen, J. H. Stokkel, M. P. M. Dorlo, T. P. C. Huitema, A. D. R. Hendrikx, J. J. M. A. |
description | Background
Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic behavior of drugs
.
The aim of this study was to develop a PBPK model to describe organ distribution of
68
Ga-DOTATATE in a population of patients without detectable neuroendocrine tumors (NETs).
Methods
Clinical
68
Ga-DOTATATE PET/CT data from 41 patients without any detectable somatostatin receptor (SSTR) overexpressing tumors were included. Scans were performed at 45 min (range 30–60 min) after intravenous bolus injection of
68
Ga-DOTATATE. Organ (spleen, liver, thyroid) and blood activity levels were derived from PET scans, and corresponding DOTATATE concentrations were calculated. A whole-body PBPK model was developed, including an internalization reaction, receptor recycling, enzymatic reaction for intracellular degradation and renal clearance. SSTR2 expression was added for several organs. Input parameters were fixed or estimated using a built-in Monte Carlo algorithm for parameter identification.
Results
68
Ga-DOTATATE was administered with a median peptide amount of 12.3 µg (range 8.05–16.9 µg) labeled with 92.7 MBq (range 43.4–129.9 MBq). SSTR2 amounts for spleen, liver and thyroid were estimated at 4.40, 7.80 and 0.0108 nmol, respectively. Variability in observed organ concentrations was best described by variability in SSTR2 expression and differences in administered peptide amounts.
Conclusions
To conclude, biodistribution of
68
Ga-DOTATATE was described with a whole-body PBPK model, where tissue distribution was mainly determined by variability in SSTR2 organ expression and differences in administered peptide amounts. |
doi_str_mv | 10.1186/s13550-021-00821-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fe2a704d85784b949bb268588895a863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fe2a704d85784b949bb268588895a863</doaj_id><sourcerecordid>2561924778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3</originalsourceid><addsrcrecordid>eNp9kk1vFCEYxydGY5vaL-CJxEs9jPI6wMVkrW1tbNIe9uCNMMDsss7ACoxmv4SfuXS3UetBSHh5-D-_PH_yNM1rBN8hJLr3GRHGYAsxaiEUdeXPmmOMJGrr8vX5X-ej5jTnDayDISaJeNkcEUqkIKw7bn4twHa9yz6OceWNHscd6HV2tkZ1mrSJ33xwxRtwdvfx7stbMEXrRlAisC6b5HsHYlrpAKzPpV7n4mMAcQCduNLtp9vlos4L4APY6uJdKBn89GUd5wKCm1N0wcaKCQ6UeYopv2peDHrM7vRxP2mWlxfL88_tze3V9fnipjWU8tIazDjnTECmpdPMGiJtTzTj1jLTIYYZpBIRJ7sB0uoTIgoprq4hxAYO5KS5PmBt1Bu1TX7Saaei9mofqJaUTtX16NTgsOaQWsG4oL2ksu9xJ5gQQjItOlJZHw6s7dxPzppqMunxCfTpS_BrtYo_lCCdwJxXwNkjIMXvs8tFTT4bN446uDhnhVmHJKaciyp98490E-cU6k_tVR3nCMmqwgeVSTHn5IbfxSCoHppHHZpH1eZR--ZRD1WQQ1Ku4rBy6Q_6P1n3dD_FRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561677119</pqid></control><display><type>article</type><title>A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>PubMed Central</source><creator>Siebinga, H. ; de Wit-van der Veen, B. J. ; Beijnen, J. H. ; Stokkel, M. P. M. ; Dorlo, T. P. C. ; Huitema, A. D. R. ; Hendrikx, J. J. M. A.</creator><creatorcontrib>Siebinga, H. ; de Wit-van der Veen, B. J. ; Beijnen, J. H. ; Stokkel, M. P. M. ; Dorlo, T. P. C. ; Huitema, A. D. R. ; Hendrikx, J. J. M. A.</creatorcontrib><description>Background
Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic behavior of drugs
.
The aim of this study was to develop a PBPK model to describe organ distribution of
68
Ga-DOTATATE in a population of patients without detectable neuroendocrine tumors (NETs).
Methods
Clinical
68
Ga-DOTATATE PET/CT data from 41 patients without any detectable somatostatin receptor (SSTR) overexpressing tumors were included. Scans were performed at 45 min (range 30–60 min) after intravenous bolus injection of
68
Ga-DOTATATE. Organ (spleen, liver, thyroid) and blood activity levels were derived from PET scans, and corresponding DOTATATE concentrations were calculated. A whole-body PBPK model was developed, including an internalization reaction, receptor recycling, enzymatic reaction for intracellular degradation and renal clearance. SSTR2 expression was added for several organs. Input parameters were fixed or estimated using a built-in Monte Carlo algorithm for parameter identification.
Results
68
Ga-DOTATATE was administered with a median peptide amount of 12.3 µg (range 8.05–16.9 µg) labeled with 92.7 MBq (range 43.4–129.9 MBq). SSTR2 amounts for spleen, liver and thyroid were estimated at 4.40, 7.80 and 0.0108 nmol, respectively. Variability in observed organ concentrations was best described by variability in SSTR2 expression and differences in administered peptide amounts.
Conclusions
To conclude, biodistribution of
68
Ga-DOTATATE was described with a whole-body PBPK model, where tissue distribution was mainly determined by variability in SSTR2 organ expression and differences in administered peptide amounts.</description><identifier>ISSN: 2191-219X</identifier><identifier>EISSN: 2191-219X</identifier><identifier>DOI: 10.1186/s13550-021-00821-7</identifier><identifier>PMID: 34398356</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>68Ga-DOTATATE ; Algorithms ; Cardiac Imaging ; Imaging ; Liver ; Mathematical models ; Medicine ; Medicine & Public Health ; Neuroendocrine tumors ; Nuclear Medicine ; Oncology ; Organs ; Original Research ; Orthopedics ; Parameter estimation ; Parameter identification ; PBPK modeling ; Peptide amount ; Peptides ; Pharmacokinetics ; Pharmacology ; Positron emission ; PRRT ; Radiology ; Receptors ; Spleen ; SSTR2 ; Thyroid gland ; Tomography ; Tumors ; Whole-body distribution</subject><ispartof>EJNMMI research, 2021-08, Vol.11 (1), p.73-73, Article 73</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3</citedby><cites>FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3</cites><orcidid>0000-0001-7767-0393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2561677119/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2561677119?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Siebinga, H.</creatorcontrib><creatorcontrib>de Wit-van der Veen, B. J.</creatorcontrib><creatorcontrib>Beijnen, J. H.</creatorcontrib><creatorcontrib>Stokkel, M. P. M.</creatorcontrib><creatorcontrib>Dorlo, T. P. C.</creatorcontrib><creatorcontrib>Huitema, A. D. R.</creatorcontrib><creatorcontrib>Hendrikx, J. J. M. A.</creatorcontrib><title>A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors</title><title>EJNMMI research</title><addtitle>EJNMMI Res</addtitle><description>Background
Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic behavior of drugs
.
The aim of this study was to develop a PBPK model to describe organ distribution of
68
Ga-DOTATATE in a population of patients without detectable neuroendocrine tumors (NETs).
Methods
Clinical
68
Ga-DOTATATE PET/CT data from 41 patients without any detectable somatostatin receptor (SSTR) overexpressing tumors were included. Scans were performed at 45 min (range 30–60 min) after intravenous bolus injection of
68
Ga-DOTATATE. Organ (spleen, liver, thyroid) and blood activity levels were derived from PET scans, and corresponding DOTATATE concentrations were calculated. A whole-body PBPK model was developed, including an internalization reaction, receptor recycling, enzymatic reaction for intracellular degradation and renal clearance. SSTR2 expression was added for several organs. Input parameters were fixed or estimated using a built-in Monte Carlo algorithm for parameter identification.
Results
68
Ga-DOTATATE was administered with a median peptide amount of 12.3 µg (range 8.05–16.9 µg) labeled with 92.7 MBq (range 43.4–129.9 MBq). SSTR2 amounts for spleen, liver and thyroid were estimated at 4.40, 7.80 and 0.0108 nmol, respectively. Variability in observed organ concentrations was best described by variability in SSTR2 expression and differences in administered peptide amounts.
Conclusions
To conclude, biodistribution of
68
Ga-DOTATATE was described with a whole-body PBPK model, where tissue distribution was mainly determined by variability in SSTR2 organ expression and differences in administered peptide amounts.</description><subject>68Ga-DOTATATE</subject><subject>Algorithms</subject><subject>Cardiac Imaging</subject><subject>Imaging</subject><subject>Liver</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neuroendocrine tumors</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Organs</subject><subject>Original Research</subject><subject>Orthopedics</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>PBPK modeling</subject><subject>Peptide amount</subject><subject>Peptides</subject><subject>Pharmacokinetics</subject><subject>Pharmacology</subject><subject>Positron emission</subject><subject>PRRT</subject><subject>Radiology</subject><subject>Receptors</subject><subject>Spleen</subject><subject>SSTR2</subject><subject>Thyroid gland</subject><subject>Tomography</subject><subject>Tumors</subject><subject>Whole-body distribution</subject><issn>2191-219X</issn><issn>2191-219X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1vFCEYxydGY5vaL-CJxEs9jPI6wMVkrW1tbNIe9uCNMMDsss7ACoxmv4SfuXS3UetBSHh5-D-_PH_yNM1rBN8hJLr3GRHGYAsxaiEUdeXPmmOMJGrr8vX5X-ej5jTnDayDISaJeNkcEUqkIKw7bn4twHa9yz6OceWNHscd6HV2tkZ1mrSJ33xwxRtwdvfx7stbMEXrRlAisC6b5HsHYlrpAKzPpV7n4mMAcQCduNLtp9vlos4L4APY6uJdKBn89GUd5wKCm1N0wcaKCQ6UeYopv2peDHrM7vRxP2mWlxfL88_tze3V9fnipjWU8tIazDjnTECmpdPMGiJtTzTj1jLTIYYZpBIRJ7sB0uoTIgoprq4hxAYO5KS5PmBt1Bu1TX7Saaei9mofqJaUTtX16NTgsOaQWsG4oL2ksu9xJ5gQQjItOlJZHw6s7dxPzppqMunxCfTpS_BrtYo_lCCdwJxXwNkjIMXvs8tFTT4bN446uDhnhVmHJKaciyp98490E-cU6k_tVR3nCMmqwgeVSTHn5IbfxSCoHppHHZpH1eZR--ZRD1WQQ1Ku4rBy6Q_6P1n3dD_FRA</recordid><startdate>20210816</startdate><enddate>20210816</enddate><creator>Siebinga, H.</creator><creator>de Wit-van der Veen, B. J.</creator><creator>Beijnen, J. H.</creator><creator>Stokkel, M. P. M.</creator><creator>Dorlo, T. P. C.</creator><creator>Huitema, A. D. R.</creator><creator>Hendrikx, J. J. M. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7767-0393</orcidid></search><sort><creationdate>20210816</creationdate><title>A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors</title><author>Siebinga, H. ; de Wit-van der Veen, B. J. ; Beijnen, J. H. ; Stokkel, M. P. M. ; Dorlo, T. P. C. ; Huitema, A. D. R. ; Hendrikx, J. J. M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>68Ga-DOTATATE</topic><topic>Algorithms</topic><topic>Cardiac Imaging</topic><topic>Imaging</topic><topic>Liver</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neuroendocrine tumors</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Organs</topic><topic>Original Research</topic><topic>Orthopedics</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>PBPK modeling</topic><topic>Peptide amount</topic><topic>Peptides</topic><topic>Pharmacokinetics</topic><topic>Pharmacology</topic><topic>Positron emission</topic><topic>PRRT</topic><topic>Radiology</topic><topic>Receptors</topic><topic>Spleen</topic><topic>SSTR2</topic><topic>Thyroid gland</topic><topic>Tomography</topic><topic>Tumors</topic><topic>Whole-body distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siebinga, H.</creatorcontrib><creatorcontrib>de Wit-van der Veen, B. J.</creatorcontrib><creatorcontrib>Beijnen, J. H.</creatorcontrib><creatorcontrib>Stokkel, M. P. M.</creatorcontrib><creatorcontrib>Dorlo, T. P. C.</creatorcontrib><creatorcontrib>Huitema, A. D. R.</creatorcontrib><creatorcontrib>Hendrikx, J. J. M. A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EJNMMI research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siebinga, H.</au><au>de Wit-van der Veen, B. J.</au><au>Beijnen, J. H.</au><au>Stokkel, M. P. M.</au><au>Dorlo, T. P. C.</au><au>Huitema, A. D. R.</au><au>Hendrikx, J. J. M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors</atitle><jtitle>EJNMMI research</jtitle><stitle>EJNMMI Res</stitle><date>2021-08-16</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>73</spage><epage>73</epage><pages>73-73</pages><artnum>73</artnum><issn>2191-219X</issn><eissn>2191-219X</eissn><abstract>Background
Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic behavior of drugs
.
The aim of this study was to develop a PBPK model to describe organ distribution of
68
Ga-DOTATATE in a population of patients without detectable neuroendocrine tumors (NETs).
Methods
Clinical
68
Ga-DOTATATE PET/CT data from 41 patients without any detectable somatostatin receptor (SSTR) overexpressing tumors were included. Scans were performed at 45 min (range 30–60 min) after intravenous bolus injection of
68
Ga-DOTATATE. Organ (spleen, liver, thyroid) and blood activity levels were derived from PET scans, and corresponding DOTATATE concentrations were calculated. A whole-body PBPK model was developed, including an internalization reaction, receptor recycling, enzymatic reaction for intracellular degradation and renal clearance. SSTR2 expression was added for several organs. Input parameters were fixed or estimated using a built-in Monte Carlo algorithm for parameter identification.
Results
68
Ga-DOTATATE was administered with a median peptide amount of 12.3 µg (range 8.05–16.9 µg) labeled with 92.7 MBq (range 43.4–129.9 MBq). SSTR2 amounts for spleen, liver and thyroid were estimated at 4.40, 7.80 and 0.0108 nmol, respectively. Variability in observed organ concentrations was best described by variability in SSTR2 expression and differences in administered peptide amounts.
Conclusions
To conclude, biodistribution of
68
Ga-DOTATATE was described with a whole-body PBPK model, where tissue distribution was mainly determined by variability in SSTR2 organ expression and differences in administered peptide amounts.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34398356</pmid><doi>10.1186/s13550-021-00821-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7767-0393</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2191-219X |
ispartof | EJNMMI research, 2021-08, Vol.11 (1), p.73-73, Article 73 |
issn | 2191-219X 2191-219X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fe2a704d85784b949bb268588895a863 |
source | Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access; PubMed Central |
subjects | 68Ga-DOTATATE Algorithms Cardiac Imaging Imaging Liver Mathematical models Medicine Medicine & Public Health Neuroendocrine tumors Nuclear Medicine Oncology Organs Original Research Orthopedics Parameter estimation Parameter identification PBPK modeling Peptide amount Peptides Pharmacokinetics Pharmacology Positron emission PRRT Radiology Receptors Spleen SSTR2 Thyroid gland Tomography Tumors Whole-body distribution |
title | A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20physiologically%20based%20pharmacokinetic%20(PBPK)%20model%20to%20describe%20organ%20distribution%20of%2068Ga-DOTATATE%20in%20patients%20without%20neuroendocrine%20tumors&rft.jtitle=EJNMMI%20research&rft.au=Siebinga,%20H.&rft.date=2021-08-16&rft.volume=11&rft.issue=1&rft.spage=73&rft.epage=73&rft.pages=73-73&rft.artnum=73&rft.issn=2191-219X&rft.eissn=2191-219X&rft_id=info:doi/10.1186/s13550-021-00821-7&rft_dat=%3Cproquest_doaj_%3E2561924778%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561677119&rft_id=info:pmid/34398356&rfr_iscdi=true |