Loading…

A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors

Background Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic beha...

Full description

Saved in:
Bibliographic Details
Published in:EJNMMI research 2021-08, Vol.11 (1), p.73-73, Article 73
Main Authors: Siebinga, H., de Wit-van der Veen, B. J., Beijnen, J. H., Stokkel, M. P. M., Dorlo, T. P. C., Huitema, A. D. R., Hendrikx, J. J. M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3
cites cdi_FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3
container_end_page 73
container_issue 1
container_start_page 73
container_title EJNMMI research
container_volume 11
creator Siebinga, H.
de Wit-van der Veen, B. J.
Beijnen, J. H.
Stokkel, M. P. M.
Dorlo, T. P. C.
Huitema, A. D. R.
Hendrikx, J. J. M. A.
description Background Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic behavior of drugs . The aim of this study was to develop a PBPK model to describe organ distribution of 68 Ga-DOTATATE in a population of patients without detectable neuroendocrine tumors (NETs). Methods Clinical 68 Ga-DOTATATE PET/CT data from 41 patients without any detectable somatostatin receptor (SSTR) overexpressing tumors were included. Scans were performed at 45 min (range 30–60 min) after intravenous bolus injection of 68 Ga-DOTATATE. Organ (spleen, liver, thyroid) and blood activity levels were derived from PET scans, and corresponding DOTATATE concentrations were calculated. A whole-body PBPK model was developed, including an internalization reaction, receptor recycling, enzymatic reaction for intracellular degradation and renal clearance. SSTR2 expression was added for several organs. Input parameters were fixed or estimated using a built-in Monte Carlo algorithm for parameter identification. Results 68 Ga-DOTATATE was administered with a median peptide amount of 12.3 µg (range 8.05–16.9 µg) labeled with 92.7 MBq (range 43.4–129.9 MBq). SSTR2 amounts for spleen, liver and thyroid were estimated at 4.40, 7.80 and 0.0108 nmol, respectively. Variability in observed organ concentrations was best described by variability in SSTR2 expression and differences in administered peptide amounts. Conclusions To conclude, biodistribution of 68 Ga-DOTATATE was described with a whole-body PBPK model, where tissue distribution was mainly determined by variability in SSTR2 organ expression and differences in administered peptide amounts.
doi_str_mv 10.1186/s13550-021-00821-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fe2a704d85784b949bb268588895a863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fe2a704d85784b949bb268588895a863</doaj_id><sourcerecordid>2561924778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3</originalsourceid><addsrcrecordid>eNp9kk1vFCEYxydGY5vaL-CJxEs9jPI6wMVkrW1tbNIe9uCNMMDsss7ACoxmv4SfuXS3UetBSHh5-D-_PH_yNM1rBN8hJLr3GRHGYAsxaiEUdeXPmmOMJGrr8vX5X-ej5jTnDayDISaJeNkcEUqkIKw7bn4twHa9yz6OceWNHscd6HV2tkZ1mrSJ33xwxRtwdvfx7stbMEXrRlAisC6b5HsHYlrpAKzPpV7n4mMAcQCduNLtp9vlos4L4APY6uJdKBn89GUd5wKCm1N0wcaKCQ6UeYopv2peDHrM7vRxP2mWlxfL88_tze3V9fnipjWU8tIazDjnTECmpdPMGiJtTzTj1jLTIYYZpBIRJ7sB0uoTIgoprq4hxAYO5KS5PmBt1Bu1TX7Saaei9mofqJaUTtX16NTgsOaQWsG4oL2ksu9xJ5gQQjItOlJZHw6s7dxPzppqMunxCfTpS_BrtYo_lCCdwJxXwNkjIMXvs8tFTT4bN446uDhnhVmHJKaciyp98490E-cU6k_tVR3nCMmqwgeVSTHn5IbfxSCoHppHHZpH1eZR--ZRD1WQQ1Ku4rBy6Q_6P1n3dD_FRA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561677119</pqid></control><display><type>article</type><title>A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors</title><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>PubMed Central</source><creator>Siebinga, H. ; de Wit-van der Veen, B. J. ; Beijnen, J. H. ; Stokkel, M. P. M. ; Dorlo, T. P. C. ; Huitema, A. D. R. ; Hendrikx, J. J. M. A.</creator><creatorcontrib>Siebinga, H. ; de Wit-van der Veen, B. J. ; Beijnen, J. H. ; Stokkel, M. P. M. ; Dorlo, T. P. C. ; Huitema, A. D. R. ; Hendrikx, J. J. M. A.</creatorcontrib><description>Background Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic behavior of drugs . The aim of this study was to develop a PBPK model to describe organ distribution of 68 Ga-DOTATATE in a population of patients without detectable neuroendocrine tumors (NETs). Methods Clinical 68 Ga-DOTATATE PET/CT data from 41 patients without any detectable somatostatin receptor (SSTR) overexpressing tumors were included. Scans were performed at 45 min (range 30–60 min) after intravenous bolus injection of 68 Ga-DOTATATE. Organ (spleen, liver, thyroid) and blood activity levels were derived from PET scans, and corresponding DOTATATE concentrations were calculated. A whole-body PBPK model was developed, including an internalization reaction, receptor recycling, enzymatic reaction for intracellular degradation and renal clearance. SSTR2 expression was added for several organs. Input parameters were fixed or estimated using a built-in Monte Carlo algorithm for parameter identification. Results 68 Ga-DOTATATE was administered with a median peptide amount of 12.3 µg (range 8.05–16.9 µg) labeled with 92.7 MBq (range 43.4–129.9 MBq). SSTR2 amounts for spleen, liver and thyroid were estimated at 4.40, 7.80 and 0.0108 nmol, respectively. Variability in observed organ concentrations was best described by variability in SSTR2 expression and differences in administered peptide amounts. Conclusions To conclude, biodistribution of 68 Ga-DOTATATE was described with a whole-body PBPK model, where tissue distribution was mainly determined by variability in SSTR2 organ expression and differences in administered peptide amounts.</description><identifier>ISSN: 2191-219X</identifier><identifier>EISSN: 2191-219X</identifier><identifier>DOI: 10.1186/s13550-021-00821-7</identifier><identifier>PMID: 34398356</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>68Ga-DOTATATE ; Algorithms ; Cardiac Imaging ; Imaging ; Liver ; Mathematical models ; Medicine ; Medicine &amp; Public Health ; Neuroendocrine tumors ; Nuclear Medicine ; Oncology ; Organs ; Original Research ; Orthopedics ; Parameter estimation ; Parameter identification ; PBPK modeling ; Peptide amount ; Peptides ; Pharmacokinetics ; Pharmacology ; Positron emission ; PRRT ; Radiology ; Receptors ; Spleen ; SSTR2 ; Thyroid gland ; Tomography ; Tumors ; Whole-body distribution</subject><ispartof>EJNMMI research, 2021-08, Vol.11 (1), p.73-73, Article 73</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3</citedby><cites>FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3</cites><orcidid>0000-0001-7767-0393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2561677119/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2561677119?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Siebinga, H.</creatorcontrib><creatorcontrib>de Wit-van der Veen, B. J.</creatorcontrib><creatorcontrib>Beijnen, J. H.</creatorcontrib><creatorcontrib>Stokkel, M. P. M.</creatorcontrib><creatorcontrib>Dorlo, T. P. C.</creatorcontrib><creatorcontrib>Huitema, A. D. R.</creatorcontrib><creatorcontrib>Hendrikx, J. J. M. A.</creatorcontrib><title>A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors</title><title>EJNMMI research</title><addtitle>EJNMMI Res</addtitle><description>Background Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic behavior of drugs . The aim of this study was to develop a PBPK model to describe organ distribution of 68 Ga-DOTATATE in a population of patients without detectable neuroendocrine tumors (NETs). Methods Clinical 68 Ga-DOTATATE PET/CT data from 41 patients without any detectable somatostatin receptor (SSTR) overexpressing tumors were included. Scans were performed at 45 min (range 30–60 min) after intravenous bolus injection of 68 Ga-DOTATATE. Organ (spleen, liver, thyroid) and blood activity levels were derived from PET scans, and corresponding DOTATATE concentrations were calculated. A whole-body PBPK model was developed, including an internalization reaction, receptor recycling, enzymatic reaction for intracellular degradation and renal clearance. SSTR2 expression was added for several organs. Input parameters were fixed or estimated using a built-in Monte Carlo algorithm for parameter identification. Results 68 Ga-DOTATATE was administered with a median peptide amount of 12.3 µg (range 8.05–16.9 µg) labeled with 92.7 MBq (range 43.4–129.9 MBq). SSTR2 amounts for spleen, liver and thyroid were estimated at 4.40, 7.80 and 0.0108 nmol, respectively. Variability in observed organ concentrations was best described by variability in SSTR2 expression and differences in administered peptide amounts. Conclusions To conclude, biodistribution of 68 Ga-DOTATATE was described with a whole-body PBPK model, where tissue distribution was mainly determined by variability in SSTR2 organ expression and differences in administered peptide amounts.</description><subject>68Ga-DOTATATE</subject><subject>Algorithms</subject><subject>Cardiac Imaging</subject><subject>Imaging</subject><subject>Liver</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Neuroendocrine tumors</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Organs</subject><subject>Original Research</subject><subject>Orthopedics</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>PBPK modeling</subject><subject>Peptide amount</subject><subject>Peptides</subject><subject>Pharmacokinetics</subject><subject>Pharmacology</subject><subject>Positron emission</subject><subject>PRRT</subject><subject>Radiology</subject><subject>Receptors</subject><subject>Spleen</subject><subject>SSTR2</subject><subject>Thyroid gland</subject><subject>Tomography</subject><subject>Tumors</subject><subject>Whole-body distribution</subject><issn>2191-219X</issn><issn>2191-219X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1vFCEYxydGY5vaL-CJxEs9jPI6wMVkrW1tbNIe9uCNMMDsss7ACoxmv4SfuXS3UetBSHh5-D-_PH_yNM1rBN8hJLr3GRHGYAsxaiEUdeXPmmOMJGrr8vX5X-ej5jTnDayDISaJeNkcEUqkIKw7bn4twHa9yz6OceWNHscd6HV2tkZ1mrSJ33xwxRtwdvfx7stbMEXrRlAisC6b5HsHYlrpAKzPpV7n4mMAcQCduNLtp9vlos4L4APY6uJdKBn89GUd5wKCm1N0wcaKCQ6UeYopv2peDHrM7vRxP2mWlxfL88_tze3V9fnipjWU8tIazDjnTECmpdPMGiJtTzTj1jLTIYYZpBIRJ7sB0uoTIgoprq4hxAYO5KS5PmBt1Bu1TX7Saaei9mofqJaUTtX16NTgsOaQWsG4oL2ksu9xJ5gQQjItOlJZHw6s7dxPzppqMunxCfTpS_BrtYo_lCCdwJxXwNkjIMXvs8tFTT4bN446uDhnhVmHJKaciyp98490E-cU6k_tVR3nCMmqwgeVSTHn5IbfxSCoHppHHZpH1eZR--ZRD1WQQ1Ku4rBy6Q_6P1n3dD_FRA</recordid><startdate>20210816</startdate><enddate>20210816</enddate><creator>Siebinga, H.</creator><creator>de Wit-van der Veen, B. J.</creator><creator>Beijnen, J. H.</creator><creator>Stokkel, M. P. M.</creator><creator>Dorlo, T. P. C.</creator><creator>Huitema, A. D. R.</creator><creator>Hendrikx, J. J. M. A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7767-0393</orcidid></search><sort><creationdate>20210816</creationdate><title>A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors</title><author>Siebinga, H. ; de Wit-van der Veen, B. J. ; Beijnen, J. H. ; Stokkel, M. P. M. ; Dorlo, T. P. C. ; Huitema, A. D. R. ; Hendrikx, J. J. M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>68Ga-DOTATATE</topic><topic>Algorithms</topic><topic>Cardiac Imaging</topic><topic>Imaging</topic><topic>Liver</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Neuroendocrine tumors</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Organs</topic><topic>Original Research</topic><topic>Orthopedics</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>PBPK modeling</topic><topic>Peptide amount</topic><topic>Peptides</topic><topic>Pharmacokinetics</topic><topic>Pharmacology</topic><topic>Positron emission</topic><topic>PRRT</topic><topic>Radiology</topic><topic>Receptors</topic><topic>Spleen</topic><topic>SSTR2</topic><topic>Thyroid gland</topic><topic>Tomography</topic><topic>Tumors</topic><topic>Whole-body distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siebinga, H.</creatorcontrib><creatorcontrib>de Wit-van der Veen, B. J.</creatorcontrib><creatorcontrib>Beijnen, J. H.</creatorcontrib><creatorcontrib>Stokkel, M. P. M.</creatorcontrib><creatorcontrib>Dorlo, T. P. C.</creatorcontrib><creatorcontrib>Huitema, A. D. R.</creatorcontrib><creatorcontrib>Hendrikx, J. J. M. A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>EJNMMI research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siebinga, H.</au><au>de Wit-van der Veen, B. J.</au><au>Beijnen, J. H.</au><au>Stokkel, M. P. M.</au><au>Dorlo, T. P. C.</au><au>Huitema, A. D. R.</au><au>Hendrikx, J. J. M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors</atitle><jtitle>EJNMMI research</jtitle><stitle>EJNMMI Res</stitle><date>2021-08-16</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>73</spage><epage>73</epage><pages>73-73</pages><artnum>73</artnum><issn>2191-219X</issn><eissn>2191-219X</eissn><abstract>Background Physiologically based pharmacokinetic (PBPK) models combine drug-specific information with prior knowledge on the physiology and biology at the organism level. Whole-body PBPK models contain an explicit representation of the organs and tissue and are a tool to predict pharmacokinetic behavior of drugs . The aim of this study was to develop a PBPK model to describe organ distribution of 68 Ga-DOTATATE in a population of patients without detectable neuroendocrine tumors (NETs). Methods Clinical 68 Ga-DOTATATE PET/CT data from 41 patients without any detectable somatostatin receptor (SSTR) overexpressing tumors were included. Scans were performed at 45 min (range 30–60 min) after intravenous bolus injection of 68 Ga-DOTATATE. Organ (spleen, liver, thyroid) and blood activity levels were derived from PET scans, and corresponding DOTATATE concentrations were calculated. A whole-body PBPK model was developed, including an internalization reaction, receptor recycling, enzymatic reaction for intracellular degradation and renal clearance. SSTR2 expression was added for several organs. Input parameters were fixed or estimated using a built-in Monte Carlo algorithm for parameter identification. Results 68 Ga-DOTATATE was administered with a median peptide amount of 12.3 µg (range 8.05–16.9 µg) labeled with 92.7 MBq (range 43.4–129.9 MBq). SSTR2 amounts for spleen, liver and thyroid were estimated at 4.40, 7.80 and 0.0108 nmol, respectively. Variability in observed organ concentrations was best described by variability in SSTR2 expression and differences in administered peptide amounts. Conclusions To conclude, biodistribution of 68 Ga-DOTATATE was described with a whole-body PBPK model, where tissue distribution was mainly determined by variability in SSTR2 organ expression and differences in administered peptide amounts.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34398356</pmid><doi>10.1186/s13550-021-00821-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7767-0393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2191-219X
ispartof EJNMMI research, 2021-08, Vol.11 (1), p.73-73, Article 73
issn 2191-219X
2191-219X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fe2a704d85784b949bb268588895a863
source Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access; PubMed Central
subjects 68Ga-DOTATATE
Algorithms
Cardiac Imaging
Imaging
Liver
Mathematical models
Medicine
Medicine & Public Health
Neuroendocrine tumors
Nuclear Medicine
Oncology
Organs
Original Research
Orthopedics
Parameter estimation
Parameter identification
PBPK modeling
Peptide amount
Peptides
Pharmacokinetics
Pharmacology
Positron emission
PRRT
Radiology
Receptors
Spleen
SSTR2
Thyroid gland
Tomography
Tumors
Whole-body distribution
title A physiologically based pharmacokinetic (PBPK) model to describe organ distribution of 68Ga-DOTATATE in patients without neuroendocrine tumors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20physiologically%20based%20pharmacokinetic%20(PBPK)%20model%20to%20describe%20organ%20distribution%20of%2068Ga-DOTATATE%20in%20patients%20without%20neuroendocrine%20tumors&rft.jtitle=EJNMMI%20research&rft.au=Siebinga,%20H.&rft.date=2021-08-16&rft.volume=11&rft.issue=1&rft.spage=73&rft.epage=73&rft.pages=73-73&rft.artnum=73&rft.issn=2191-219X&rft.eissn=2191-219X&rft_id=info:doi/10.1186/s13550-021-00821-7&rft_dat=%3Cproquest_doaj_%3E2561924778%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-c257775805a9ea5dc39db3a57dd5c6152504913e96f04356014042343002c0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2561677119&rft_id=info:pmid/34398356&rfr_iscdi=true