Loading…

Phase Composition, Microstructure and Mechanical Properties of Zr57Cu15Ni10Nb5 Alloy Obtained by Selective Laser Melting

Zr57Cu15Ni10Nb5 (more known as Vit-106) is a promising zirconium-based alloy with a high glass-forming ability, and belongs to the so-called bulk metallic glasses (BMG). Workpieces with a size of around one centimeter in all three dimensions can be obtained from a BMG alloy by casting. However, furt...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Manufacturing and Materials Processing 2024-02, Vol.8 (1), p.10
Main Authors: Khmyrov, Roman S., Korotkov, Andrey, Gridnev, Mikhail, Podrabinnik, Pavel, Tarasova, Tatiana V., Gusarov, Andrey V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zr57Cu15Ni10Nb5 (more known as Vit-106) is a promising zirconium-based alloy with a high glass-forming ability, and belongs to the so-called bulk metallic glasses (BMG). Workpieces with a size of around one centimeter in all three dimensions can be obtained from a BMG alloy by casting. However, further increasing the cast size decreases the cooling rate and thus induces crystallization. Selective laser melting (SLM) is a well-known technique to overcome size limitations for BMGs because a workpiece is built by the addition of multiple melt portions in which the cooling rate is kept above the critical one. Currently, BMG parts obtained by SLM suffer from partial crystallization. The present work studies the influence of SLM process parameters on the partial crystallization of Vit-106 by metallography and the influence of the microstructure on mechanical properties by microhardness and wear resistance testing. Submicron crystalline inclusions are observed in an amorphous matrix of a Vit-106 alloy obtained by SLM. The size and the concentration of the inclusions can be controlled by varying the laser scanning speed. It is shown that submicron crystalline inclusions formed in the amorphous matrix during SLM can favorably affect microhardness and wear resistance.
ISSN:2504-4494
2504-4494
DOI:10.3390/jmmp8010010