Loading…

Regime shifts occur disproportionately faster in larger ecosystems

Regime shifts can abruptly affect hydrological, climatic and terrestrial systems, leading to degraded ecosystems and impoverished societies. While the frequency of regime shifts is predicted to increase, the fundamental relationships between the spatial-temporal scales of shifts and their underlying...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-03, Vol.11 (1), p.1175-1175, Article 1175
Main Authors: Cooper, Gregory S., Willcock, Simon, Dearing, John A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3
cites cdi_FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3
container_end_page 1175
container_issue 1
container_start_page 1175
container_title Nature communications
container_volume 11
creator Cooper, Gregory S.
Willcock, Simon
Dearing, John A.
description Regime shifts can abruptly affect hydrological, climatic and terrestrial systems, leading to degraded ecosystems and impoverished societies. While the frequency of regime shifts is predicted to increase, the fundamental relationships between the spatial-temporal scales of shifts and their underlying mechanisms are poorly understood. Here we analyse empirical data from terrestrial ( n  = 4), marine ( n  = 25) and freshwater ( n  = 13) environments and show positive sub-linear empirical relationships between the size and shift duration of systems. Each additional unit area of an ecosystem provides an increasingly smaller unit of time taken for that system to collapse, meaning that large systems tend to shift more slowly than small systems but disproportionately faster. We substantiate these findings with five computational models that reveal the importance of system structure in controlling shift duration. The findings imply that shifts in Earth ecosystems occur over ‘human’ timescales of years and decades, meaning the collapse of large vulnerable ecosystems, such as the Amazon rainforest and Caribbean coral reefs, may take only a few decades once triggered. Little is known about how the speed of ecosystem collapse depends on ecosystem size. Here, Cooper, Willcock et al. analyse empirical data and models finding that although regime shift duration increases with ecosystem size, this relationship saturates and even large ecosystems can collapse in a few decades.
doi_str_mv 10.1038/s41467-020-15029-x
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fe60ae2203a94abea322edd32a807727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fe60ae2203a94abea322edd32a807727</doaj_id><sourcerecordid>2376229429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEpiMHTu5IEHFR6VKSAjO1qwz3nqVxIudVN1_j9uU0nLAF4_G7zwz47coXtbwtgbRvkuylkpXgFDVDWBXXT8pjhFkXdUaxdMH8VFxmtIO8hFd3Ur5vDgSWDcauva4-Pidt37kMl16N6cyWLvEsvdpH8M-xNmHiWYeDqWjNHMs_VQOFLc5YhvSIefG9KJ45mhIfHp3nxQ_P3_6cfa1uvj25fzsw0VlGwlz1fe6kbJrQDoiicQNybbvQSjSDp3UiLBB4YSwGwC0DqFrWnBOWbaKWZwU5yu3D7Qz--hHigcTyJvbRIhbQ3liO7BxrIA4AwV1kjZMApH7XiC1oDXqzHq_svbLZuTe8jRHGh5BH79M_tJsw5XRoPISIgPe3AFi-LVwms3ok-VhoInDkgwKrRA7iV2Wvv5HugtLnPJX3aga3SmlMKtwVdkYUors7oepwdw4blbHTXbc3DpurnPRq4dr3Jf88TcLxCrIhvop-_a393-wvwHIbbfQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375796662</pqid></control><display><type>article</type><title>Regime shifts occur disproportionately faster in larger ecosystems</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Cooper, Gregory S. ; Willcock, Simon ; Dearing, John A.</creator><creatorcontrib>Cooper, Gregory S. ; Willcock, Simon ; Dearing, John A.</creatorcontrib><description>Regime shifts can abruptly affect hydrological, climatic and terrestrial systems, leading to degraded ecosystems and impoverished societies. While the frequency of regime shifts is predicted to increase, the fundamental relationships between the spatial-temporal scales of shifts and their underlying mechanisms are poorly understood. Here we analyse empirical data from terrestrial ( n  = 4), marine ( n  = 25) and freshwater ( n  = 13) environments and show positive sub-linear empirical relationships between the size and shift duration of systems. Each additional unit area of an ecosystem provides an increasingly smaller unit of time taken for that system to collapse, meaning that large systems tend to shift more slowly than small systems but disproportionately faster. We substantiate these findings with five computational models that reveal the importance of system structure in controlling shift duration. The findings imply that shifts in Earth ecosystems occur over ‘human’ timescales of years and decades, meaning the collapse of large vulnerable ecosystems, such as the Amazon rainforest and Caribbean coral reefs, may take only a few decades once triggered. Little is known about how the speed of ecosystem collapse depends on ecosystem size. Here, Cooper, Willcock et al. analyse empirical data and models finding that although regime shift duration increases with ecosystem size, this relationship saturates and even large ecosystems can collapse in a few decades.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15029-x</identifier><identifier>PMID: 32157098</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/1144 ; 631/158/2445 ; 639/766/530/2795 ; 704/158/2463 ; Animals ; Computer applications ; Computer Simulation ; Coral reefs ; Data analysis ; Ecological Parameter Monitoring ; Ecosystem ; Ecosystem degradation ; Ecosystems ; Empirical analysis ; Humanities and Social Sciences ; Humans ; Hydrology ; Mathematical models ; multidisciplinary ; Population Dynamics ; Rainforests ; Science ; Science (multidisciplinary) ; Spatio-Temporal Analysis ; Time Factors</subject><ispartof>Nature communications, 2020-03, Vol.11 (1), p.1175-1175, Article 1175</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3</citedby><cites>FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3</cites><orcidid>0000-0001-9534-9114 ; 0000-0001-6268-6608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2375796662/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2375796662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32157098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, Gregory S.</creatorcontrib><creatorcontrib>Willcock, Simon</creatorcontrib><creatorcontrib>Dearing, John A.</creatorcontrib><title>Regime shifts occur disproportionately faster in larger ecosystems</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Regime shifts can abruptly affect hydrological, climatic and terrestrial systems, leading to degraded ecosystems and impoverished societies. While the frequency of regime shifts is predicted to increase, the fundamental relationships between the spatial-temporal scales of shifts and their underlying mechanisms are poorly understood. Here we analyse empirical data from terrestrial ( n  = 4), marine ( n  = 25) and freshwater ( n  = 13) environments and show positive sub-linear empirical relationships between the size and shift duration of systems. Each additional unit area of an ecosystem provides an increasingly smaller unit of time taken for that system to collapse, meaning that large systems tend to shift more slowly than small systems but disproportionately faster. We substantiate these findings with five computational models that reveal the importance of system structure in controlling shift duration. The findings imply that shifts in Earth ecosystems occur over ‘human’ timescales of years and decades, meaning the collapse of large vulnerable ecosystems, such as the Amazon rainforest and Caribbean coral reefs, may take only a few decades once triggered. Little is known about how the speed of ecosystem collapse depends on ecosystem size. Here, Cooper, Willcock et al. analyse empirical data and models finding that although regime shift duration increases with ecosystem size, this relationship saturates and even large ecosystems can collapse in a few decades.</description><subject>631/158/1144</subject><subject>631/158/2445</subject><subject>639/766/530/2795</subject><subject>704/158/2463</subject><subject>Animals</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Coral reefs</subject><subject>Data analysis</subject><subject>Ecological Parameter Monitoring</subject><subject>Ecosystem</subject><subject>Ecosystem degradation</subject><subject>Ecosystems</subject><subject>Empirical analysis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Population Dynamics</subject><subject>Rainforests</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatio-Temporal Analysis</subject><subject>Time Factors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEpiMHTu5IEHFR6VKSAjO1qwz3nqVxIudVN1_j9uU0nLAF4_G7zwz47coXtbwtgbRvkuylkpXgFDVDWBXXT8pjhFkXdUaxdMH8VFxmtIO8hFd3Ur5vDgSWDcauva4-Pidt37kMl16N6cyWLvEsvdpH8M-xNmHiWYeDqWjNHMs_VQOFLc5YhvSIefG9KJ45mhIfHp3nxQ_P3_6cfa1uvj25fzsw0VlGwlz1fe6kbJrQDoiicQNybbvQSjSDp3UiLBB4YSwGwC0DqFrWnBOWbaKWZwU5yu3D7Qz--hHigcTyJvbRIhbQ3liO7BxrIA4AwV1kjZMApH7XiC1oDXqzHq_svbLZuTe8jRHGh5BH79M_tJsw5XRoPISIgPe3AFi-LVwms3ok-VhoInDkgwKrRA7iV2Wvv5HugtLnPJX3aga3SmlMKtwVdkYUors7oepwdw4blbHTXbc3DpurnPRq4dr3Jf88TcLxCrIhvop-_a393-wvwHIbbfQ</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Cooper, Gregory S.</creator><creator>Willcock, Simon</creator><creator>Dearing, John A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9534-9114</orcidid><orcidid>https://orcid.org/0000-0001-6268-6608</orcidid></search><sort><creationdate>20200310</creationdate><title>Regime shifts occur disproportionately faster in larger ecosystems</title><author>Cooper, Gregory S. ; Willcock, Simon ; Dearing, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/158/1144</topic><topic>631/158/2445</topic><topic>639/766/530/2795</topic><topic>704/158/2463</topic><topic>Animals</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Coral reefs</topic><topic>Data analysis</topic><topic>Ecological Parameter Monitoring</topic><topic>Ecosystem</topic><topic>Ecosystem degradation</topic><topic>Ecosystems</topic><topic>Empirical analysis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Population Dynamics</topic><topic>Rainforests</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatio-Temporal Analysis</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Gregory S.</creatorcontrib><creatorcontrib>Willcock, Simon</creatorcontrib><creatorcontrib>Dearing, John A.</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Gregory S.</au><au>Willcock, Simon</au><au>Dearing, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regime shifts occur disproportionately faster in larger ecosystems</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1175</spage><epage>1175</epage><pages>1175-1175</pages><artnum>1175</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Regime shifts can abruptly affect hydrological, climatic and terrestrial systems, leading to degraded ecosystems and impoverished societies. While the frequency of regime shifts is predicted to increase, the fundamental relationships between the spatial-temporal scales of shifts and their underlying mechanisms are poorly understood. Here we analyse empirical data from terrestrial ( n  = 4), marine ( n  = 25) and freshwater ( n  = 13) environments and show positive sub-linear empirical relationships between the size and shift duration of systems. Each additional unit area of an ecosystem provides an increasingly smaller unit of time taken for that system to collapse, meaning that large systems tend to shift more slowly than small systems but disproportionately faster. We substantiate these findings with five computational models that reveal the importance of system structure in controlling shift duration. The findings imply that shifts in Earth ecosystems occur over ‘human’ timescales of years and decades, meaning the collapse of large vulnerable ecosystems, such as the Amazon rainforest and Caribbean coral reefs, may take only a few decades once triggered. Little is known about how the speed of ecosystem collapse depends on ecosystem size. Here, Cooper, Willcock et al. analyse empirical data and models finding that although regime shift duration increases with ecosystem size, this relationship saturates and even large ecosystems can collapse in a few decades.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32157098</pmid><doi>10.1038/s41467-020-15029-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9534-9114</orcidid><orcidid>https://orcid.org/0000-0001-6268-6608</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-03, Vol.11 (1), p.1175-1175, Article 1175
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fe60ae2203a94abea322edd32a807727
source Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/158/1144
631/158/2445
639/766/530/2795
704/158/2463
Animals
Computer applications
Computer Simulation
Coral reefs
Data analysis
Ecological Parameter Monitoring
Ecosystem
Ecosystem degradation
Ecosystems
Empirical analysis
Humanities and Social Sciences
Humans
Hydrology
Mathematical models
multidisciplinary
Population Dynamics
Rainforests
Science
Science (multidisciplinary)
Spatio-Temporal Analysis
Time Factors
title Regime shifts occur disproportionately faster in larger ecosystems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regime%20shifts%20occur%20disproportionately%20faster%20in%20larger%20ecosystems&rft.jtitle=Nature%20communications&rft.au=Cooper,%20Gregory%20S.&rft.date=2020-03-10&rft.volume=11&rft.issue=1&rft.spage=1175&rft.epage=1175&rft.pages=1175-1175&rft.artnum=1175&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15029-x&rft_dat=%3Cproquest_doaj_%3E2376229429%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2375796662&rft_id=info:pmid/32157098&rfr_iscdi=true