Loading…
Regime shifts occur disproportionately faster in larger ecosystems
Regime shifts can abruptly affect hydrological, climatic and terrestrial systems, leading to degraded ecosystems and impoverished societies. While the frequency of regime shifts is predicted to increase, the fundamental relationships between the spatial-temporal scales of shifts and their underlying...
Saved in:
Published in: | Nature communications 2020-03, Vol.11 (1), p.1175-1175, Article 1175 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3 |
container_end_page | 1175 |
container_issue | 1 |
container_start_page | 1175 |
container_title | Nature communications |
container_volume | 11 |
creator | Cooper, Gregory S. Willcock, Simon Dearing, John A. |
description | Regime shifts can abruptly affect hydrological, climatic and terrestrial systems, leading to degraded ecosystems and impoverished societies. While the frequency of regime shifts is predicted to increase, the fundamental relationships between the spatial-temporal scales of shifts and their underlying mechanisms are poorly understood. Here we analyse empirical data from terrestrial (
n
= 4), marine (
n
= 25) and freshwater (
n
= 13) environments and show positive sub-linear empirical relationships between the size and shift duration of systems. Each additional unit area of an ecosystem provides an increasingly smaller unit of time taken for that system to collapse, meaning that large systems tend to shift more slowly than small systems but disproportionately faster. We substantiate these findings with five computational models that reveal the importance of system structure in controlling shift duration. The findings imply that shifts in Earth ecosystems occur over ‘human’ timescales of years and decades, meaning the collapse of large vulnerable ecosystems, such as the Amazon rainforest and Caribbean coral reefs, may take only a few decades once triggered.
Little is known about how the speed of ecosystem collapse depends on ecosystem size. Here, Cooper, Willcock et al. analyse empirical data and models finding that although regime shift duration increases with ecosystem size, this relationship saturates and even large ecosystems can collapse in a few decades. |
doi_str_mv | 10.1038/s41467-020-15029-x |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fe60ae2203a94abea322edd32a807727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fe60ae2203a94abea322edd32a807727</doaj_id><sourcerecordid>2376229429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEpiMHTu5IEHFR6VKSAjO1qwz3nqVxIudVN1_j9uU0nLAF4_G7zwz47coXtbwtgbRvkuylkpXgFDVDWBXXT8pjhFkXdUaxdMH8VFxmtIO8hFd3Ur5vDgSWDcauva4-Pidt37kMl16N6cyWLvEsvdpH8M-xNmHiWYeDqWjNHMs_VQOFLc5YhvSIefG9KJ45mhIfHp3nxQ_P3_6cfa1uvj25fzsw0VlGwlz1fe6kbJrQDoiicQNybbvQSjSDp3UiLBB4YSwGwC0DqFrWnBOWbaKWZwU5yu3D7Qz--hHigcTyJvbRIhbQ3liO7BxrIA4AwV1kjZMApH7XiC1oDXqzHq_svbLZuTe8jRHGh5BH79M_tJsw5XRoPISIgPe3AFi-LVwms3ok-VhoInDkgwKrRA7iV2Wvv5HugtLnPJX3aga3SmlMKtwVdkYUors7oepwdw4blbHTXbc3DpurnPRq4dr3Jf88TcLxCrIhvop-_a393-wvwHIbbfQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375796662</pqid></control><display><type>article</type><title>Regime shifts occur disproportionately faster in larger ecosystems</title><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Cooper, Gregory S. ; Willcock, Simon ; Dearing, John A.</creator><creatorcontrib>Cooper, Gregory S. ; Willcock, Simon ; Dearing, John A.</creatorcontrib><description>Regime shifts can abruptly affect hydrological, climatic and terrestrial systems, leading to degraded ecosystems and impoverished societies. While the frequency of regime shifts is predicted to increase, the fundamental relationships between the spatial-temporal scales of shifts and their underlying mechanisms are poorly understood. Here we analyse empirical data from terrestrial (
n
= 4), marine (
n
= 25) and freshwater (
n
= 13) environments and show positive sub-linear empirical relationships between the size and shift duration of systems. Each additional unit area of an ecosystem provides an increasingly smaller unit of time taken for that system to collapse, meaning that large systems tend to shift more slowly than small systems but disproportionately faster. We substantiate these findings with five computational models that reveal the importance of system structure in controlling shift duration. The findings imply that shifts in Earth ecosystems occur over ‘human’ timescales of years and decades, meaning the collapse of large vulnerable ecosystems, such as the Amazon rainforest and Caribbean coral reefs, may take only a few decades once triggered.
Little is known about how the speed of ecosystem collapse depends on ecosystem size. Here, Cooper, Willcock et al. analyse empirical data and models finding that although regime shift duration increases with ecosystem size, this relationship saturates and even large ecosystems can collapse in a few decades.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-15029-x</identifier><identifier>PMID: 32157098</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/1144 ; 631/158/2445 ; 639/766/530/2795 ; 704/158/2463 ; Animals ; Computer applications ; Computer Simulation ; Coral reefs ; Data analysis ; Ecological Parameter Monitoring ; Ecosystem ; Ecosystem degradation ; Ecosystems ; Empirical analysis ; Humanities and Social Sciences ; Humans ; Hydrology ; Mathematical models ; multidisciplinary ; Population Dynamics ; Rainforests ; Science ; Science (multidisciplinary) ; Spatio-Temporal Analysis ; Time Factors</subject><ispartof>Nature communications, 2020-03, Vol.11 (1), p.1175-1175, Article 1175</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3</citedby><cites>FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3</cites><orcidid>0000-0001-9534-9114 ; 0000-0001-6268-6608</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2375796662/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2375796662?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32157098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cooper, Gregory S.</creatorcontrib><creatorcontrib>Willcock, Simon</creatorcontrib><creatorcontrib>Dearing, John A.</creatorcontrib><title>Regime shifts occur disproportionately faster in larger ecosystems</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Regime shifts can abruptly affect hydrological, climatic and terrestrial systems, leading to degraded ecosystems and impoverished societies. While the frequency of regime shifts is predicted to increase, the fundamental relationships between the spatial-temporal scales of shifts and their underlying mechanisms are poorly understood. Here we analyse empirical data from terrestrial (
n
= 4), marine (
n
= 25) and freshwater (
n
= 13) environments and show positive sub-linear empirical relationships between the size and shift duration of systems. Each additional unit area of an ecosystem provides an increasingly smaller unit of time taken for that system to collapse, meaning that large systems tend to shift more slowly than small systems but disproportionately faster. We substantiate these findings with five computational models that reveal the importance of system structure in controlling shift duration. The findings imply that shifts in Earth ecosystems occur over ‘human’ timescales of years and decades, meaning the collapse of large vulnerable ecosystems, such as the Amazon rainforest and Caribbean coral reefs, may take only a few decades once triggered.
Little is known about how the speed of ecosystem collapse depends on ecosystem size. Here, Cooper, Willcock et al. analyse empirical data and models finding that although regime shift duration increases with ecosystem size, this relationship saturates and even large ecosystems can collapse in a few decades.</description><subject>631/158/1144</subject><subject>631/158/2445</subject><subject>639/766/530/2795</subject><subject>704/158/2463</subject><subject>Animals</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Coral reefs</subject><subject>Data analysis</subject><subject>Ecological Parameter Monitoring</subject><subject>Ecosystem</subject><subject>Ecosystem degradation</subject><subject>Ecosystems</subject><subject>Empirical analysis</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hydrology</subject><subject>Mathematical models</subject><subject>multidisciplinary</subject><subject>Population Dynamics</subject><subject>Rainforests</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatio-Temporal Analysis</subject><subject>Time Factors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1v1DAQhiMEolXpH-CAInHhEpiMHTu5IEHFR6VKSAjO1qwz3nqVxIudVN1_j9uU0nLAF4_G7zwz47coXtbwtgbRvkuylkpXgFDVDWBXXT8pjhFkXdUaxdMH8VFxmtIO8hFd3Ur5vDgSWDcauva4-Pidt37kMl16N6cyWLvEsvdpH8M-xNmHiWYeDqWjNHMs_VQOFLc5YhvSIefG9KJ45mhIfHp3nxQ_P3_6cfa1uvj25fzsw0VlGwlz1fe6kbJrQDoiicQNybbvQSjSDp3UiLBB4YSwGwC0DqFrWnBOWbaKWZwU5yu3D7Qz--hHigcTyJvbRIhbQ3liO7BxrIA4AwV1kjZMApH7XiC1oDXqzHq_svbLZuTe8jRHGh5BH79M_tJsw5XRoPISIgPe3AFi-LVwms3ok-VhoInDkgwKrRA7iV2Wvv5HugtLnPJX3aga3SmlMKtwVdkYUors7oepwdw4blbHTXbc3DpurnPRq4dr3Jf88TcLxCrIhvop-_a393-wvwHIbbfQ</recordid><startdate>20200310</startdate><enddate>20200310</enddate><creator>Cooper, Gregory S.</creator><creator>Willcock, Simon</creator><creator>Dearing, John A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9534-9114</orcidid><orcidid>https://orcid.org/0000-0001-6268-6608</orcidid></search><sort><creationdate>20200310</creationdate><title>Regime shifts occur disproportionately faster in larger ecosystems</title><author>Cooper, Gregory S. ; Willcock, Simon ; Dearing, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/158/1144</topic><topic>631/158/2445</topic><topic>639/766/530/2795</topic><topic>704/158/2463</topic><topic>Animals</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Coral reefs</topic><topic>Data analysis</topic><topic>Ecological Parameter Monitoring</topic><topic>Ecosystem</topic><topic>Ecosystem degradation</topic><topic>Ecosystems</topic><topic>Empirical analysis</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hydrology</topic><topic>Mathematical models</topic><topic>multidisciplinary</topic><topic>Population Dynamics</topic><topic>Rainforests</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatio-Temporal Analysis</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cooper, Gregory S.</creatorcontrib><creatorcontrib>Willcock, Simon</creatorcontrib><creatorcontrib>Dearing, John A.</creatorcontrib><collection>Springer_OA刊</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cooper, Gregory S.</au><au>Willcock, Simon</au><au>Dearing, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regime shifts occur disproportionately faster in larger ecosystems</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2020-03-10</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>1175</spage><epage>1175</epage><pages>1175-1175</pages><artnum>1175</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Regime shifts can abruptly affect hydrological, climatic and terrestrial systems, leading to degraded ecosystems and impoverished societies. While the frequency of regime shifts is predicted to increase, the fundamental relationships between the spatial-temporal scales of shifts and their underlying mechanisms are poorly understood. Here we analyse empirical data from terrestrial (
n
= 4), marine (
n
= 25) and freshwater (
n
= 13) environments and show positive sub-linear empirical relationships between the size and shift duration of systems. Each additional unit area of an ecosystem provides an increasingly smaller unit of time taken for that system to collapse, meaning that large systems tend to shift more slowly than small systems but disproportionately faster. We substantiate these findings with five computational models that reveal the importance of system structure in controlling shift duration. The findings imply that shifts in Earth ecosystems occur over ‘human’ timescales of years and decades, meaning the collapse of large vulnerable ecosystems, such as the Amazon rainforest and Caribbean coral reefs, may take only a few decades once triggered.
Little is known about how the speed of ecosystem collapse depends on ecosystem size. Here, Cooper, Willcock et al. analyse empirical data and models finding that although regime shift duration increases with ecosystem size, this relationship saturates and even large ecosystems can collapse in a few decades.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32157098</pmid><doi>10.1038/s41467-020-15029-x</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9534-9114</orcidid><orcidid>https://orcid.org/0000-0001-6268-6608</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-03, Vol.11 (1), p.1175-1175, Article 1175 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fe60ae2203a94abea322edd32a807727 |
source | Nature; Publicly Available Content (ProQuest); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 631/158/1144 631/158/2445 639/766/530/2795 704/158/2463 Animals Computer applications Computer Simulation Coral reefs Data analysis Ecological Parameter Monitoring Ecosystem Ecosystem degradation Ecosystems Empirical analysis Humanities and Social Sciences Humans Hydrology Mathematical models multidisciplinary Population Dynamics Rainforests Science Science (multidisciplinary) Spatio-Temporal Analysis Time Factors |
title | Regime shifts occur disproportionately faster in larger ecosystems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regime%20shifts%20occur%20disproportionately%20faster%20in%20larger%20ecosystems&rft.jtitle=Nature%20communications&rft.au=Cooper,%20Gregory%20S.&rft.date=2020-03-10&rft.volume=11&rft.issue=1&rft.spage=1175&rft.epage=1175&rft.pages=1175-1175&rft.artnum=1175&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-15029-x&rft_dat=%3Cproquest_doaj_%3E2376229429%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-dd75449504faa42ae5a48dd036a7f2f47220b23f33cb002cf209580ff6cec6ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2375796662&rft_id=info:pmid/32157098&rfr_iscdi=true |