Loading…

Decomposing the Bragg glass and the peak effect in a Type-II superconductor

Adding impurities or defects destroys crystalline order. Occasionally, however, extraordinary behaviour emerges that cannot be explained by perturbing the ordered state. One example is the Kondo effect, where magnetic impurities in metals drastically alter the temperature dependence of resistivity....

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2018-03, Vol.9 (1), p.901-12, Article 901
Main Authors: Toft-Petersen, Rasmus, Abrahamsen, Asger B., Balog, Sandor, Porcar, Lionel, Laver, Mark
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-ff6eb75e4d72e6756199675968ab7696ffca64578b3fc107f9bb7d9ad9bd93073
cites cdi_FETCH-LOGICAL-c606t-ff6eb75e4d72e6756199675968ab7696ffca64578b3fc107f9bb7d9ad9bd93073
container_end_page 12
container_issue 1
container_start_page 901
container_title Nature communications
container_volume 9
creator Toft-Petersen, Rasmus
Abrahamsen, Asger B.
Balog, Sandor
Porcar, Lionel
Laver, Mark
description Adding impurities or defects destroys crystalline order. Occasionally, however, extraordinary behaviour emerges that cannot be explained by perturbing the ordered state. One example is the Kondo effect, where magnetic impurities in metals drastically alter the temperature dependence of resistivity. In Type-II superconductors, disorder generally works to pin vortices, giving zero resistivity below a critical current j c . However, peaks have been observed in the temperature and field dependences of j c . This peak effect is difficult to explain in terms of an ordered Abrikosov vortex lattice. Here we test the widespread paradigm that an order-disorder transition of the vortex ensemble drives the peak effect. Using neutron scattering to probe the vortex order in superconducting vanadium, we uncover an order-disorder transition from a quasi-long-range-ordered phase to a vortex glass. The peak effect, however, is found to lie at higher fields and temperatures, in a region where thermal fluctuations of individual vortices become significant. The disordering of the vortex lattice in a type-II superconductor is widely perceived to underpin unusual peaks in the temperature and field dependence of critical current. By contrast, here Toft-Petersen et al. find an order-disorder transition in a superconducting vanadium sample that is unconnected with peaks observed in critical current.
doi_str_mv 10.1038/s41467-018-03267-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fe73e623b0ca4f43b28bb05479ba51da</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fe73e623b0ca4f43b28bb05479ba51da</doaj_id><sourcerecordid>2009877787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-ff6eb75e4d72e6756199675968ab7696ffca64578b3fc107f9bb7d9ad9bd93073</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEolXpC7BAkdiwCfgWXzZIUAocUambdm35Mk5zyImDnSC1T1_3pJSWBd7MaOafzx7_VfUao_cYUfkhM8y4aBCWDaKkZDfPqkOCGG6wIPT5o_ygOs55i8qhCkvGXlYHRLUIMSoOqx9fwMXdFHM_dvV8BfXnZLqu7gaTc21Gv69NYH7WEAK4ue7H2tQX1xM0m02dlwmSi6Nf3BzTq-pFMEOG4_t4VF1-Pb04-d6cnX_bnHw6axxHfG5C4GBFC8wLAly0HCtVguLSWMEVD8EZzlohLQ0OIxGUtcIr45X1iiJBj6rNyvXRbPWU-p1J1zqaXu8LMXXapLl3A-gAggIn1CJnWGDUEmktaplQ1rTYm8L6uLKmxe7AOxjnZIYn0Kedsb_SXfytW0kZ47wA3t0DUvy1QJ71rs8OhsGMEJesCSp2CcIlKtK3_0i3cUlj-aqiQkoKIeTddmRVuRRzThAeHoORvrNer9brYr3eW69vytCbx2s8jPwxugjoKsilNXaQ_t79H-wt0nq5dA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009877787</pqid></control><display><type>article</type><title>Decomposing the Bragg glass and the peak effect in a Type-II superconductor</title><source>PubMed Central(OpenAccess)</source><source>Nature</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Toft-Petersen, Rasmus ; Abrahamsen, Asger B. ; Balog, Sandor ; Porcar, Lionel ; Laver, Mark</creator><creatorcontrib>Toft-Petersen, Rasmus ; Abrahamsen, Asger B. ; Balog, Sandor ; Porcar, Lionel ; Laver, Mark</creatorcontrib><description>Adding impurities or defects destroys crystalline order. Occasionally, however, extraordinary behaviour emerges that cannot be explained by perturbing the ordered state. One example is the Kondo effect, where magnetic impurities in metals drastically alter the temperature dependence of resistivity. In Type-II superconductors, disorder generally works to pin vortices, giving zero resistivity below a critical current j c . However, peaks have been observed in the temperature and field dependences of j c . This peak effect is difficult to explain in terms of an ordered Abrikosov vortex lattice. Here we test the widespread paradigm that an order-disorder transition of the vortex ensemble drives the peak effect. Using neutron scattering to probe the vortex order in superconducting vanadium, we uncover an order-disorder transition from a quasi-long-range-ordered phase to a vortex glass. The peak effect, however, is found to lie at higher fields and temperatures, in a region where thermal fluctuations of individual vortices become significant. The disordering of the vortex lattice in a type-II superconductor is widely perceived to underpin unusual peaks in the temperature and field dependence of critical current. By contrast, here Toft-Petersen et al. find an order-disorder transition in a superconducting vanadium sample that is unconnected with peaks observed in critical current.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-018-03267-z</identifier><identifier>PMID: 29500437</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/987 ; 639/301/119/1003 ; 639/766/119/1002 ; Critical current (superconductivity) ; Crystal defects ; Electrical resistivity ; Electrons ; Heavy metals ; Humanities and Social Sciences ; Impurities ; Kondo effect ; multidisciplinary ; Neutron scattering ; Neutrons ; Order-disorder transformations ; Phase transitions ; Science ; Science (multidisciplinary) ; Superconductivity ; Temperature dependence ; Vanadium ; Variation ; Vortices</subject><ispartof>Nature communications, 2018-03, Vol.9 (1), p.901-12, Article 901</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-ff6eb75e4d72e6756199675968ab7696ffca64578b3fc107f9bb7d9ad9bd93073</citedby><cites>FETCH-LOGICAL-c606t-ff6eb75e4d72e6756199675968ab7696ffca64578b3fc107f9bb7d9ad9bd93073</cites><orcidid>0000-0001-7638-3675 ; 0000-0002-1556-3565 ; 0000-0002-3286-1118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2009877787/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2009877787?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29500437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toft-Petersen, Rasmus</creatorcontrib><creatorcontrib>Abrahamsen, Asger B.</creatorcontrib><creatorcontrib>Balog, Sandor</creatorcontrib><creatorcontrib>Porcar, Lionel</creatorcontrib><creatorcontrib>Laver, Mark</creatorcontrib><title>Decomposing the Bragg glass and the peak effect in a Type-II superconductor</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Adding impurities or defects destroys crystalline order. Occasionally, however, extraordinary behaviour emerges that cannot be explained by perturbing the ordered state. One example is the Kondo effect, where magnetic impurities in metals drastically alter the temperature dependence of resistivity. In Type-II superconductors, disorder generally works to pin vortices, giving zero resistivity below a critical current j c . However, peaks have been observed in the temperature and field dependences of j c . This peak effect is difficult to explain in terms of an ordered Abrikosov vortex lattice. Here we test the widespread paradigm that an order-disorder transition of the vortex ensemble drives the peak effect. Using neutron scattering to probe the vortex order in superconducting vanadium, we uncover an order-disorder transition from a quasi-long-range-ordered phase to a vortex glass. The peak effect, however, is found to lie at higher fields and temperatures, in a region where thermal fluctuations of individual vortices become significant. The disordering of the vortex lattice in a type-II superconductor is widely perceived to underpin unusual peaks in the temperature and field dependence of critical current. By contrast, here Toft-Petersen et al. find an order-disorder transition in a superconducting vanadium sample that is unconnected with peaks observed in critical current.</description><subject>639/166/987</subject><subject>639/301/119/1003</subject><subject>639/766/119/1002</subject><subject>Critical current (superconductivity)</subject><subject>Crystal defects</subject><subject>Electrical resistivity</subject><subject>Electrons</subject><subject>Heavy metals</subject><subject>Humanities and Social Sciences</subject><subject>Impurities</subject><subject>Kondo effect</subject><subject>multidisciplinary</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Order-disorder transformations</subject><subject>Phase transitions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superconductivity</subject><subject>Temperature dependence</subject><subject>Vanadium</subject><subject>Variation</subject><subject>Vortices</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kctu1TAQhiMEolXpC7BAkdiwCfgWXzZIUAocUambdm35Mk5zyImDnSC1T1_3pJSWBd7MaOafzx7_VfUao_cYUfkhM8y4aBCWDaKkZDfPqkOCGG6wIPT5o_ygOs55i8qhCkvGXlYHRLUIMSoOqx9fwMXdFHM_dvV8BfXnZLqu7gaTc21Gv69NYH7WEAK4ue7H2tQX1xM0m02dlwmSi6Nf3BzTq-pFMEOG4_t4VF1-Pb04-d6cnX_bnHw6axxHfG5C4GBFC8wLAly0HCtVguLSWMEVD8EZzlohLQ0OIxGUtcIr45X1iiJBj6rNyvXRbPWU-p1J1zqaXu8LMXXapLl3A-gAggIn1CJnWGDUEmktaplQ1rTYm8L6uLKmxe7AOxjnZIYn0Kedsb_SXfytW0kZ47wA3t0DUvy1QJ71rs8OhsGMEJesCSp2CcIlKtK3_0i3cUlj-aqiQkoKIeTddmRVuRRzThAeHoORvrNer9brYr3eW69vytCbx2s8jPwxugjoKsilNXaQ_t79H-wt0nq5dA</recordid><startdate>20180302</startdate><enddate>20180302</enddate><creator>Toft-Petersen, Rasmus</creator><creator>Abrahamsen, Asger B.</creator><creator>Balog, Sandor</creator><creator>Porcar, Lionel</creator><creator>Laver, Mark</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7638-3675</orcidid><orcidid>https://orcid.org/0000-0002-1556-3565</orcidid><orcidid>https://orcid.org/0000-0002-3286-1118</orcidid></search><sort><creationdate>20180302</creationdate><title>Decomposing the Bragg glass and the peak effect in a Type-II superconductor</title><author>Toft-Petersen, Rasmus ; Abrahamsen, Asger B. ; Balog, Sandor ; Porcar, Lionel ; Laver, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-ff6eb75e4d72e6756199675968ab7696ffca64578b3fc107f9bb7d9ad9bd93073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/166/987</topic><topic>639/301/119/1003</topic><topic>639/766/119/1002</topic><topic>Critical current (superconductivity)</topic><topic>Crystal defects</topic><topic>Electrical resistivity</topic><topic>Electrons</topic><topic>Heavy metals</topic><topic>Humanities and Social Sciences</topic><topic>Impurities</topic><topic>Kondo effect</topic><topic>multidisciplinary</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Order-disorder transformations</topic><topic>Phase transitions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superconductivity</topic><topic>Temperature dependence</topic><topic>Vanadium</topic><topic>Variation</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toft-Petersen, Rasmus</creatorcontrib><creatorcontrib>Abrahamsen, Asger B.</creatorcontrib><creatorcontrib>Balog, Sandor</creatorcontrib><creatorcontrib>Porcar, Lionel</creatorcontrib><creatorcontrib>Laver, Mark</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toft-Petersen, Rasmus</au><au>Abrahamsen, Asger B.</au><au>Balog, Sandor</au><au>Porcar, Lionel</au><au>Laver, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposing the Bragg glass and the peak effect in a Type-II superconductor</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-03-02</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>901</spage><epage>12</epage><pages>901-12</pages><artnum>901</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Adding impurities or defects destroys crystalline order. Occasionally, however, extraordinary behaviour emerges that cannot be explained by perturbing the ordered state. One example is the Kondo effect, where magnetic impurities in metals drastically alter the temperature dependence of resistivity. In Type-II superconductors, disorder generally works to pin vortices, giving zero resistivity below a critical current j c . However, peaks have been observed in the temperature and field dependences of j c . This peak effect is difficult to explain in terms of an ordered Abrikosov vortex lattice. Here we test the widespread paradigm that an order-disorder transition of the vortex ensemble drives the peak effect. Using neutron scattering to probe the vortex order in superconducting vanadium, we uncover an order-disorder transition from a quasi-long-range-ordered phase to a vortex glass. The peak effect, however, is found to lie at higher fields and temperatures, in a region where thermal fluctuations of individual vortices become significant. The disordering of the vortex lattice in a type-II superconductor is widely perceived to underpin unusual peaks in the temperature and field dependence of critical current. By contrast, here Toft-Petersen et al. find an order-disorder transition in a superconducting vanadium sample that is unconnected with peaks observed in critical current.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29500437</pmid><doi>10.1038/s41467-018-03267-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7638-3675</orcidid><orcidid>https://orcid.org/0000-0002-1556-3565</orcidid><orcidid>https://orcid.org/0000-0002-3286-1118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2018-03, Vol.9 (1), p.901-12, Article 901
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_fe73e623b0ca4f43b28bb05479ba51da
source PubMed Central(OpenAccess); Nature; Publicly Available Content (ProQuest); Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/987
639/301/119/1003
639/766/119/1002
Critical current (superconductivity)
Crystal defects
Electrical resistivity
Electrons
Heavy metals
Humanities and Social Sciences
Impurities
Kondo effect
multidisciplinary
Neutron scattering
Neutrons
Order-disorder transformations
Phase transitions
Science
Science (multidisciplinary)
Superconductivity
Temperature dependence
Vanadium
Variation
Vortices
title Decomposing the Bragg glass and the peak effect in a Type-II superconductor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A34%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposing%20the%20Bragg%20glass%20and%20the%20peak%20effect%20in%20a%20Type-II%20superconductor&rft.jtitle=Nature%20communications&rft.au=Toft-Petersen,%20Rasmus&rft.date=2018-03-02&rft.volume=9&rft.issue=1&rft.spage=901&rft.epage=12&rft.pages=901-12&rft.artnum=901&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-018-03267-z&rft_dat=%3Cproquest_doaj_%3E2009877787%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-ff6eb75e4d72e6756199675968ab7696ffca64578b3fc107f9bb7d9ad9bd93073%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2009877787&rft_id=info:pmid/29500437&rfr_iscdi=true