Loading…
Assessment of Three Machine Learning Techniques with Open-Access Geographic Data for Forest Fire Susceptibility Monitoring—Evidence from Southern Ecuador
Forest fires have become a habitual threat in all types of ecosystems, which is the reason why it is necessary to improve management of the territories and optimization of prevention and means of extinction. This study compares three machine learning techniques: logistic regression, logistic decisio...
Saved in:
Published in: | Forests 2022-03, Vol.13 (3), p.474 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-f5a93777b82e457118eaa474c4d31765b658ddca75772680cb58d4eae0d68f253 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-f5a93777b82e457118eaa474c4d31765b658ddca75772680cb58d4eae0d68f253 |
container_end_page | |
container_issue | 3 |
container_start_page | 474 |
container_title | Forests |
container_volume | 13 |
creator | Reyes-Bueno, Fabián Loján-Córdova, Julia |
description | Forest fires have become a habitual threat in all types of ecosystems, which is the reason why it is necessary to improve management of the territories and optimization of prevention and means of extinction. This study compares three machine learning techniques: logistic regression, logistic decision tree, and multivariate adaptive regression spline to identify areas susceptible to forest fires in the Loja canton. In the training of the machine learning models, a multitemporal database with 1436 points was used, fed with the information from seven variables related to fuel moisture, proximity to anthropic activities, and ground elevation. After analyzing the performance of the three models, better results were observed with the LMT, thus offering application ease for local decision-makers. The results show that the technique used allowed generating a model with a good predictive capacity and that the maps resulting from the model can be updated in short periods of time. However, it is necessary to highlight the lack meteorological data availability at the local level and to encourage future researchers to implement improvements in this regard. |
doi_str_mv | 10.3390/f13030474 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_fea8fb5dcade448fb45eb7dd2cc585f1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_fea8fb5dcade448fb45eb7dd2cc585f1</doaj_id><sourcerecordid>2642402347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-f5a93777b82e457118eaa474c4d31765b658ddca75772680cb58d4eae0d68f253</originalsourceid><addsrcrecordid>eNpNUbFu2zAQJYoWaOBk6B8QyJRBLSWSojQaqZ0EcJAh7kxQ5NGiYZMqSbXI1o_olr_rl4Spi6C33LvDu3eHdwh9qslnSnvyxdaUUMIEe4fO6r7vK9YT8f4__BFdpLQnJbjo-oadoedlSpDSEXzGweLtGAHwvdKj84A3oKJ3foe3oEfvvs-Q8E-XR_wwga-WWpdJfANhF9U0Oo2_qqywDRGvQ4SU8dpFwI9z0jBlN7iDy0_4PniXQyyqf379Xv1wBrwGbGM44scw5xGixys9KxPiOfpg1SHBxb-8QN_Wq-31bbV5uLm7Xm4qTXmXK8tVT4UQQ9cA46KuO1CqmKCZobVo-dDyzhitBBeiaTuih1IzUEBM29mG0wW6O-maoPZyiu6o4pMMysm_jRB3UsXs9AGkBdXZgRc1A4wVyDgMwphGa97x4v8CXZ60phhe_cpyH-boy_myaVnDSEOZKKyrE0vHkFIE-7a1JvL1lfLtlfQFSieUMw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642402347</pqid></control><display><type>article</type><title>Assessment of Three Machine Learning Techniques with Open-Access Geographic Data for Forest Fire Susceptibility Monitoring—Evidence from Southern Ecuador</title><source>Publicly Available Content Database</source><creator>Reyes-Bueno, Fabián ; Loján-Córdova, Julia</creator><creatorcontrib>Reyes-Bueno, Fabián ; Loján-Córdova, Julia</creatorcontrib><description>Forest fires have become a habitual threat in all types of ecosystems, which is the reason why it is necessary to improve management of the territories and optimization of prevention and means of extinction. This study compares three machine learning techniques: logistic regression, logistic decision tree, and multivariate adaptive regression spline to identify areas susceptible to forest fires in the Loja canton. In the training of the machine learning models, a multitemporal database with 1436 points was used, fed with the information from seven variables related to fuel moisture, proximity to anthropic activities, and ground elevation. After analyzing the performance of the three models, better results were observed with the LMT, thus offering application ease for local decision-makers. The results show that the technique used allowed generating a model with a good predictive capacity and that the maps resulting from the model can be updated in short periods of time. However, it is necessary to highlight the lack meteorological data availability at the local level and to encourage future researchers to implement improvements in this regard.</description><identifier>ISSN: 1999-4907</identifier><identifier>EISSN: 1999-4907</identifier><identifier>DOI: 10.3390/f13030474</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Decision making ; Decision trees ; Elevation ; Forest & brush fires ; Forest fires ; Humidity ; Learning algorithms ; logistic decision trees ; logistic regression ; Machine learning ; Meteorological data ; Moisture effects ; Optimization ; Rain ; Seasons ; spatial modeling ; Strategic management ; susceptibility ; Topography ; Variables ; Vegetation</subject><ispartof>Forests, 2022-03, Vol.13 (3), p.474</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-f5a93777b82e457118eaa474c4d31765b658ddca75772680cb58d4eae0d68f253</citedby><cites>FETCH-LOGICAL-c358t-f5a93777b82e457118eaa474c4d31765b658ddca75772680cb58d4eae0d68f253</cites><orcidid>0000-0003-0832-2621 ; 0000-0002-5646-0263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642402347/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642402347?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Reyes-Bueno, Fabián</creatorcontrib><creatorcontrib>Loján-Córdova, Julia</creatorcontrib><title>Assessment of Three Machine Learning Techniques with Open-Access Geographic Data for Forest Fire Susceptibility Monitoring—Evidence from Southern Ecuador</title><title>Forests</title><description>Forest fires have become a habitual threat in all types of ecosystems, which is the reason why it is necessary to improve management of the territories and optimization of prevention and means of extinction. This study compares three machine learning techniques: logistic regression, logistic decision tree, and multivariate adaptive regression spline to identify areas susceptible to forest fires in the Loja canton. In the training of the machine learning models, a multitemporal database with 1436 points was used, fed with the information from seven variables related to fuel moisture, proximity to anthropic activities, and ground elevation. After analyzing the performance of the three models, better results were observed with the LMT, thus offering application ease for local decision-makers. The results show that the technique used allowed generating a model with a good predictive capacity and that the maps resulting from the model can be updated in short periods of time. However, it is necessary to highlight the lack meteorological data availability at the local level and to encourage future researchers to implement improvements in this regard.</description><subject>Decision making</subject><subject>Decision trees</subject><subject>Elevation</subject><subject>Forest & brush fires</subject><subject>Forest fires</subject><subject>Humidity</subject><subject>Learning algorithms</subject><subject>logistic decision trees</subject><subject>logistic regression</subject><subject>Machine learning</subject><subject>Meteorological data</subject><subject>Moisture effects</subject><subject>Optimization</subject><subject>Rain</subject><subject>Seasons</subject><subject>spatial modeling</subject><subject>Strategic management</subject><subject>susceptibility</subject><subject>Topography</subject><subject>Variables</subject><subject>Vegetation</subject><issn>1999-4907</issn><issn>1999-4907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUbFu2zAQJYoWaOBk6B8QyJRBLSWSojQaqZ0EcJAh7kxQ5NGiYZMqSbXI1o_olr_rl4Spi6C33LvDu3eHdwh9qslnSnvyxdaUUMIEe4fO6r7vK9YT8f4__BFdpLQnJbjo-oadoedlSpDSEXzGweLtGAHwvdKj84A3oKJ3foe3oEfvvs-Q8E-XR_wwga-WWpdJfANhF9U0Oo2_qqywDRGvQ4SU8dpFwI9z0jBlN7iDy0_4PniXQyyqf379Xv1wBrwGbGM44scw5xGixys9KxPiOfpg1SHBxb-8QN_Wq-31bbV5uLm7Xm4qTXmXK8tVT4UQQ9cA46KuO1CqmKCZobVo-dDyzhitBBeiaTuih1IzUEBM29mG0wW6O-maoPZyiu6o4pMMysm_jRB3UsXs9AGkBdXZgRc1A4wVyDgMwphGa97x4v8CXZ60phhe_cpyH-boy_myaVnDSEOZKKyrE0vHkFIE-7a1JvL1lfLtlfQFSieUMw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Reyes-Bueno, Fabián</creator><creator>Loján-Córdova, Julia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0832-2621</orcidid><orcidid>https://orcid.org/0000-0002-5646-0263</orcidid></search><sort><creationdate>20220301</creationdate><title>Assessment of Three Machine Learning Techniques with Open-Access Geographic Data for Forest Fire Susceptibility Monitoring—Evidence from Southern Ecuador</title><author>Reyes-Bueno, Fabián ; Loján-Córdova, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-f5a93777b82e457118eaa474c4d31765b658ddca75772680cb58d4eae0d68f253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Decision making</topic><topic>Decision trees</topic><topic>Elevation</topic><topic>Forest & brush fires</topic><topic>Forest fires</topic><topic>Humidity</topic><topic>Learning algorithms</topic><topic>logistic decision trees</topic><topic>logistic regression</topic><topic>Machine learning</topic><topic>Meteorological data</topic><topic>Moisture effects</topic><topic>Optimization</topic><topic>Rain</topic><topic>Seasons</topic><topic>spatial modeling</topic><topic>Strategic management</topic><topic>susceptibility</topic><topic>Topography</topic><topic>Variables</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes-Bueno, Fabián</creatorcontrib><creatorcontrib>Loján-Córdova, Julia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agriculture Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Forests</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes-Bueno, Fabián</au><au>Loján-Córdova, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of Three Machine Learning Techniques with Open-Access Geographic Data for Forest Fire Susceptibility Monitoring—Evidence from Southern Ecuador</atitle><jtitle>Forests</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>13</volume><issue>3</issue><spage>474</spage><pages>474-</pages><issn>1999-4907</issn><eissn>1999-4907</eissn><abstract>Forest fires have become a habitual threat in all types of ecosystems, which is the reason why it is necessary to improve management of the territories and optimization of prevention and means of extinction. This study compares three machine learning techniques: logistic regression, logistic decision tree, and multivariate adaptive regression spline to identify areas susceptible to forest fires in the Loja canton. In the training of the machine learning models, a multitemporal database with 1436 points was used, fed with the information from seven variables related to fuel moisture, proximity to anthropic activities, and ground elevation. After analyzing the performance of the three models, better results were observed with the LMT, thus offering application ease for local decision-makers. The results show that the technique used allowed generating a model with a good predictive capacity and that the maps resulting from the model can be updated in short periods of time. However, it is necessary to highlight the lack meteorological data availability at the local level and to encourage future researchers to implement improvements in this regard.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/f13030474</doi><orcidid>https://orcid.org/0000-0003-0832-2621</orcidid><orcidid>https://orcid.org/0000-0002-5646-0263</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1999-4907 |
ispartof | Forests, 2022-03, Vol.13 (3), p.474 |
issn | 1999-4907 1999-4907 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_fea8fb5dcade448fb45eb7dd2cc585f1 |
source | Publicly Available Content Database |
subjects | Decision making Decision trees Elevation Forest & brush fires Forest fires Humidity Learning algorithms logistic decision trees logistic regression Machine learning Meteorological data Moisture effects Optimization Rain Seasons spatial modeling Strategic management susceptibility Topography Variables Vegetation |
title | Assessment of Three Machine Learning Techniques with Open-Access Geographic Data for Forest Fire Susceptibility Monitoring—Evidence from Southern Ecuador |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A31%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20Three%20Machine%20Learning%20Techniques%20with%20Open-Access%20Geographic%20Data%20for%20Forest%20Fire%20Susceptibility%20Monitoring%E2%80%94Evidence%20from%20Southern%20Ecuador&rft.jtitle=Forests&rft.au=Reyes-Bueno,%20Fabi%C3%A1n&rft.date=2022-03-01&rft.volume=13&rft.issue=3&rft.spage=474&rft.pages=474-&rft.issn=1999-4907&rft.eissn=1999-4907&rft_id=info:doi/10.3390/f13030474&rft_dat=%3Cproquest_doaj_%3E2642402347%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-f5a93777b82e457118eaa474c4d31765b658ddca75772680cb58d4eae0d68f253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642402347&rft_id=info:pmid/&rfr_iscdi=true |