Loading…
Numerical implementation of the Murnaghan material model in ABAQUS/Standard
The paper presents a numerical implementation of the Murnaghan material model (M) [1] in the finite element method software ABAQUS / Standard v. 6.14 [2]. The UHYPER user subroutine is employed, which is suitable for the class of isotropic hyperelastic models [3]. As a special case of the M model, t...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper presents a numerical implementation of the Murnaghan material model (M) [1] in the finite element method software ABAQUS / Standard v. 6.14 [2]. The UHYPER user subroutine is employed, which is suitable for the class of isotropic hyperelastic models [3]. As a special case of the M model, the Saint Venant-Kirchhoff (SVK) model is considered [4]. Formal verification on the basis of elementary tests is performed. Among others, a special attention is paid to a simple shear deformation. In all tested types of deformation, analytical values confirms results based on the finite element procedure within assumed numerical precision and accuracy. It should be noted that the stored-energy function of the M and SVK models do not meet any requirements of the mathematical theory of non-linear elasticity [4, 5]. Therefore, these models are suitable for relatively small deformations, while there are no restrictions on finite rotations. As an example of applications, a tube under axial compression is considered in two cases. Various starting parameters for the Riks procedure [6, 7] are adopted to obtain different solutions of corresponding boundary value problem. Material parameters of steel are considered according to Lurie [8]. |
---|---|
ISSN: | 2261-236X 2274-7214 2261-236X |
DOI: | 10.1051/matecconf/201819601042 |