Loading…

Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice

Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to gi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of developmental biology 2018-11, Vol.6 (4), p.27
Main Authors: Sen, Rwik, Pezoa, Sofia A, Carpio Shull, Lomeli, Hernandez-Lagunas, Laura, Niswander, Lee A, Artinger, Kristin Bruk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53
cites cdi_FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53
container_end_page
container_issue 4
container_start_page 27
container_title Journal of developmental biology
container_volume 6
creator Sen, Rwik
Pezoa, Sofia A
Carpio Shull, Lomeli
Hernandez-Lagunas, Laura
Niswander, Lee A
Artinger, Kristin Bruk
description Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to give rise to the different shapes and sizes of the bone and cartilage. Epigenetic regulators are good candidates to be involved in this regulation, since they can exert both broad as well as precise control on pattern formation. Here, we investigated the role of the histone acetyltransferases Kat2a and Kat2b in craniofacial development using TALEN/CRISPR/Cas9 mutagenesis in zebrafish and the (also called ) allele in mice. and are broadly expressed during embryogenesis within the central nervous system and craniofacial region. Single and double and zebrafish mutants have an overall shortening and hypoplastic nature of the cartilage elements and disruption of the posterior ceratobranchial cartilages, likely due to smaller domains of expression of both cartilage- and bone-specific markers, including and , and and , respectively. Similarly, in mice we observe defects in the craniofacial skeleton, including hypoplastic bone and cartilage and altered expression of and cartilage markers ( , ). In addition, we determined that following the loss of Kat2a activity, overall histone 3 lysine 9 (H3K9) acetylation, the main epigenetic target of Kat2a/Kat2b, was decreased. These results suggest that Kat2a and Kat2b are required for growth and differentiation of craniofacial cartilage and bone in both zebrafish and mice by regulating H3K9 acetylation.
doi_str_mv 10.3390/jdb6040027
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_feb9b02b0e7b46cc814d6b206c59e1e4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_feb9b02b0e7b46cc814d6b206c59e1e4</doaj_id><sourcerecordid>2582801654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53</originalsourceid><addsrcrecordid>eNpdkt9rFDEQxxdRbKl98Q-QBV9EOM3vzb4I9fxVrAiiL76ESTK55tjb1CRXOP96d-9qbc1LhplPvvOdME3zlJJXnPfk9dpbRQQhrHvQHDPG6IJ3sn94Jz5qTktZk-n0lGtBHzdHnAgmpCbHze_PUBm0MPp2jmx75rDuhpphLAEzFJwyNV7Humu_4Wo7QMXSLqdyTAFchKFdQq5xgBXuVd6mEdt3MUyPcawRakxjG8f2J9oMIZbLPfUlOnzSPAowFDy9uU-aHx_ef19-Wlx8_Xi-PLtYONGxughaoFKTWS1dbynrpWXaU62kpRKU10qwzmPgGIRiXgoH1DPiRGC0U0Hyk-b8oOsTrM1VjhvIO5Mgmn0i5ZWZJ3ADmoC2t4RZgp0VyjlNhVeWEeVkjxTFpPXmoHW1tRv0bhoxw3BP9H5ljJdmla6N4lRKMZt5cSOQ068tlmo2sTgcBhgxbYthlHPBu76fez3_D12nbR6nrzJMaqYJVXKmXh4ol1MpGcOtGUrMvCHm34ZM8LO79m_Rv_vA_wDb07Z-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582801654</pqid></control><display><type>article</type><title>Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sen, Rwik ; Pezoa, Sofia A ; Carpio Shull, Lomeli ; Hernandez-Lagunas, Laura ; Niswander, Lee A ; Artinger, Kristin Bruk</creator><creatorcontrib>Sen, Rwik ; Pezoa, Sofia A ; Carpio Shull, Lomeli ; Hernandez-Lagunas, Laura ; Niswander, Lee A ; Artinger, Kristin Bruk</creatorcontrib><description>Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to give rise to the different shapes and sizes of the bone and cartilage. Epigenetic regulators are good candidates to be involved in this regulation, since they can exert both broad as well as precise control on pattern formation. Here, we investigated the role of the histone acetyltransferases Kat2a and Kat2b in craniofacial development using TALEN/CRISPR/Cas9 mutagenesis in zebrafish and the (also called ) allele in mice. and are broadly expressed during embryogenesis within the central nervous system and craniofacial region. Single and double and zebrafish mutants have an overall shortening and hypoplastic nature of the cartilage elements and disruption of the posterior ceratobranchial cartilages, likely due to smaller domains of expression of both cartilage- and bone-specific markers, including and , and and , respectively. Similarly, in mice we observe defects in the craniofacial skeleton, including hypoplastic bone and cartilage and altered expression of and cartilage markers ( , ). In addition, we determined that following the loss of Kat2a activity, overall histone 3 lysine 9 (H3K9) acetylation, the main epigenetic target of Kat2a/Kat2b, was decreased. These results suggest that Kat2a and Kat2b are required for growth and differentiation of craniofacial cartilage and bone in both zebrafish and mice by regulating H3K9 acetylation.</description><identifier>ISSN: 2221-3759</identifier><identifier>EISSN: 2221-3759</identifier><identifier>DOI: 10.3390/jdb6040027</identifier><identifier>PMID: 30424580</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acetylation ; Acetyltransferase ; Bones ; Cartilage ; Cbfa-1 protein ; Cell differentiation ; Central nervous system ; cranial neural crest cells ; Craniofacial growth ; craniofacial skeleton ; CRISPR ; Danio rerio ; DNA methylation ; Embryogenesis ; Embryos ; Enzymes ; Epigenetics ; GCN5 ; Gene expression ; Genomes ; Heart ; histone H3K9 acetylation ; Histones ; Lysine ; Mutagenesis ; Mutation ; Neural crest ; Pattern formation ; PCAF ; RNA polymerase ; Skeleton ; Skull ; Sox9 protein ; Vertebrates ; Zebrafish</subject><ispartof>Journal of developmental biology, 2018-11, Vol.6 (4), p.27</ispartof><rights>2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53</citedby><cites>FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53</cites><orcidid>0000-0002-3003-6042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2582801654/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2582801654?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30424580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sen, Rwik</creatorcontrib><creatorcontrib>Pezoa, Sofia A</creatorcontrib><creatorcontrib>Carpio Shull, Lomeli</creatorcontrib><creatorcontrib>Hernandez-Lagunas, Laura</creatorcontrib><creatorcontrib>Niswander, Lee A</creatorcontrib><creatorcontrib>Artinger, Kristin Bruk</creatorcontrib><title>Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice</title><title>Journal of developmental biology</title><addtitle>J Dev Biol</addtitle><description>Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to give rise to the different shapes and sizes of the bone and cartilage. Epigenetic regulators are good candidates to be involved in this regulation, since they can exert both broad as well as precise control on pattern formation. Here, we investigated the role of the histone acetyltransferases Kat2a and Kat2b in craniofacial development using TALEN/CRISPR/Cas9 mutagenesis in zebrafish and the (also called ) allele in mice. and are broadly expressed during embryogenesis within the central nervous system and craniofacial region. Single and double and zebrafish mutants have an overall shortening and hypoplastic nature of the cartilage elements and disruption of the posterior ceratobranchial cartilages, likely due to smaller domains of expression of both cartilage- and bone-specific markers, including and , and and , respectively. Similarly, in mice we observe defects in the craniofacial skeleton, including hypoplastic bone and cartilage and altered expression of and cartilage markers ( , ). In addition, we determined that following the loss of Kat2a activity, overall histone 3 lysine 9 (H3K9) acetylation, the main epigenetic target of Kat2a/Kat2b, was decreased. These results suggest that Kat2a and Kat2b are required for growth and differentiation of craniofacial cartilage and bone in both zebrafish and mice by regulating H3K9 acetylation.</description><subject>Acetylation</subject><subject>Acetyltransferase</subject><subject>Bones</subject><subject>Cartilage</subject><subject>Cbfa-1 protein</subject><subject>Cell differentiation</subject><subject>Central nervous system</subject><subject>cranial neural crest cells</subject><subject>Craniofacial growth</subject><subject>craniofacial skeleton</subject><subject>CRISPR</subject><subject>Danio rerio</subject><subject>DNA methylation</subject><subject>Embryogenesis</subject><subject>Embryos</subject><subject>Enzymes</subject><subject>Epigenetics</subject><subject>GCN5</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Heart</subject><subject>histone H3K9 acetylation</subject><subject>Histones</subject><subject>Lysine</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Neural crest</subject><subject>Pattern formation</subject><subject>PCAF</subject><subject>RNA polymerase</subject><subject>Skeleton</subject><subject>Skull</subject><subject>Sox9 protein</subject><subject>Vertebrates</subject><subject>Zebrafish</subject><issn>2221-3759</issn><issn>2221-3759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9rFDEQxxdRbKl98Q-QBV9EOM3vzb4I9fxVrAiiL76ESTK55tjb1CRXOP96d-9qbc1LhplPvvOdME3zlJJXnPfk9dpbRQQhrHvQHDPG6IJ3sn94Jz5qTktZk-n0lGtBHzdHnAgmpCbHze_PUBm0MPp2jmx75rDuhpphLAEzFJwyNV7Humu_4Wo7QMXSLqdyTAFchKFdQq5xgBXuVd6mEdt3MUyPcawRakxjG8f2J9oMIZbLPfUlOnzSPAowFDy9uU-aHx_ef19-Wlx8_Xi-PLtYONGxughaoFKTWS1dbynrpWXaU62kpRKU10qwzmPgGIRiXgoH1DPiRGC0U0Hyk-b8oOsTrM1VjhvIO5Mgmn0i5ZWZJ3ADmoC2t4RZgp0VyjlNhVeWEeVkjxTFpPXmoHW1tRv0bhoxw3BP9H5ljJdmla6N4lRKMZt5cSOQ068tlmo2sTgcBhgxbYthlHPBu76fez3_D12nbR6nrzJMaqYJVXKmXh4ol1MpGcOtGUrMvCHm34ZM8LO79m_Rv_vA_wDb07Z-</recordid><startdate>20181112</startdate><enddate>20181112</enddate><creator>Sen, Rwik</creator><creator>Pezoa, Sofia A</creator><creator>Carpio Shull, Lomeli</creator><creator>Hernandez-Lagunas, Laura</creator><creator>Niswander, Lee A</creator><creator>Artinger, Kristin Bruk</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3003-6042</orcidid></search><sort><creationdate>20181112</creationdate><title>Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice</title><author>Sen, Rwik ; Pezoa, Sofia A ; Carpio Shull, Lomeli ; Hernandez-Lagunas, Laura ; Niswander, Lee A ; Artinger, Kristin Bruk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylation</topic><topic>Acetyltransferase</topic><topic>Bones</topic><topic>Cartilage</topic><topic>Cbfa-1 protein</topic><topic>Cell differentiation</topic><topic>Central nervous system</topic><topic>cranial neural crest cells</topic><topic>Craniofacial growth</topic><topic>craniofacial skeleton</topic><topic>CRISPR</topic><topic>Danio rerio</topic><topic>DNA methylation</topic><topic>Embryogenesis</topic><topic>Embryos</topic><topic>Enzymes</topic><topic>Epigenetics</topic><topic>GCN5</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Heart</topic><topic>histone H3K9 acetylation</topic><topic>Histones</topic><topic>Lysine</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Neural crest</topic><topic>Pattern formation</topic><topic>PCAF</topic><topic>RNA polymerase</topic><topic>Skeleton</topic><topic>Skull</topic><topic>Sox9 protein</topic><topic>Vertebrates</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sen, Rwik</creatorcontrib><creatorcontrib>Pezoa, Sofia A</creatorcontrib><creatorcontrib>Carpio Shull, Lomeli</creatorcontrib><creatorcontrib>Hernandez-Lagunas, Laura</creatorcontrib><creatorcontrib>Niswander, Lee A</creatorcontrib><creatorcontrib>Artinger, Kristin Bruk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sen, Rwik</au><au>Pezoa, Sofia A</au><au>Carpio Shull, Lomeli</au><au>Hernandez-Lagunas, Laura</au><au>Niswander, Lee A</au><au>Artinger, Kristin Bruk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice</atitle><jtitle>Journal of developmental biology</jtitle><addtitle>J Dev Biol</addtitle><date>2018-11-12</date><risdate>2018</risdate><volume>6</volume><issue>4</issue><spage>27</spage><pages>27-</pages><issn>2221-3759</issn><eissn>2221-3759</eissn><abstract>Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to give rise to the different shapes and sizes of the bone and cartilage. Epigenetic regulators are good candidates to be involved in this regulation, since they can exert both broad as well as precise control on pattern formation. Here, we investigated the role of the histone acetyltransferases Kat2a and Kat2b in craniofacial development using TALEN/CRISPR/Cas9 mutagenesis in zebrafish and the (also called ) allele in mice. and are broadly expressed during embryogenesis within the central nervous system and craniofacial region. Single and double and zebrafish mutants have an overall shortening and hypoplastic nature of the cartilage elements and disruption of the posterior ceratobranchial cartilages, likely due to smaller domains of expression of both cartilage- and bone-specific markers, including and , and and , respectively. Similarly, in mice we observe defects in the craniofacial skeleton, including hypoplastic bone and cartilage and altered expression of and cartilage markers ( , ). In addition, we determined that following the loss of Kat2a activity, overall histone 3 lysine 9 (H3K9) acetylation, the main epigenetic target of Kat2a/Kat2b, was decreased. These results suggest that Kat2a and Kat2b are required for growth and differentiation of craniofacial cartilage and bone in both zebrafish and mice by regulating H3K9 acetylation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30424580</pmid><doi>10.3390/jdb6040027</doi><orcidid>https://orcid.org/0000-0002-3003-6042</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2221-3759
ispartof Journal of developmental biology, 2018-11, Vol.6 (4), p.27
issn 2221-3759
2221-3759
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_feb9b02b0e7b46cc814d6b206c59e1e4
source Publicly Available Content Database; PubMed Central
subjects Acetylation
Acetyltransferase
Bones
Cartilage
Cbfa-1 protein
Cell differentiation
Central nervous system
cranial neural crest cells
Craniofacial growth
craniofacial skeleton
CRISPR
Danio rerio
DNA methylation
Embryogenesis
Embryos
Enzymes
Epigenetics
GCN5
Gene expression
Genomes
Heart
histone H3K9 acetylation
Histones
Lysine
Mutagenesis
Mutation
Neural crest
Pattern formation
PCAF
RNA polymerase
Skeleton
Skull
Sox9 protein
Vertebrates
Zebrafish
title Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kat2a%20and%20Kat2b%20Acetyltransferase%20Activity%20Regulates%20Craniofacial%20Cartilage%20and%20Bone%20Differentiation%20in%20Zebrafish%20and%20Mice&rft.jtitle=Journal%20of%20developmental%20biology&rft.au=Sen,%20Rwik&rft.date=2018-11-12&rft.volume=6&rft.issue=4&rft.spage=27&rft.pages=27-&rft.issn=2221-3759&rft.eissn=2221-3759&rft_id=info:doi/10.3390/jdb6040027&rft_dat=%3Cproquest_doaj_%3E2582801654%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582801654&rft_id=info:pmid/30424580&rfr_iscdi=true