Loading…
Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice
Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to gi...
Saved in:
Published in: | Journal of developmental biology 2018-11, Vol.6 (4), p.27 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53 |
---|---|
cites | cdi_FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53 |
container_end_page | |
container_issue | 4 |
container_start_page | 27 |
container_title | Journal of developmental biology |
container_volume | 6 |
creator | Sen, Rwik Pezoa, Sofia A Carpio Shull, Lomeli Hernandez-Lagunas, Laura Niswander, Lee A Artinger, Kristin Bruk |
description | Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to give rise to the different shapes and sizes of the bone and cartilage. Epigenetic regulators are good candidates to be involved in this regulation, since they can exert both broad as well as precise control on pattern formation. Here, we investigated the role of the histone acetyltransferases Kat2a and Kat2b in craniofacial development using TALEN/CRISPR/Cas9 mutagenesis in zebrafish and the
(also called
) allele in mice.
and
are broadly expressed during embryogenesis within the central nervous system and craniofacial region. Single and double
and
zebrafish mutants have an overall shortening and hypoplastic nature of the cartilage elements and disruption of the posterior ceratobranchial cartilages, likely due to smaller domains of expression of both cartilage- and bone-specific markers, including
and
, and
and
, respectively. Similarly, in mice we observe defects in the craniofacial skeleton, including hypoplastic bone and cartilage and altered expression of
and cartilage markers (
,
). In addition, we determined that following the loss of Kat2a activity, overall histone 3 lysine 9 (H3K9) acetylation, the main epigenetic target of Kat2a/Kat2b, was decreased. These results suggest that Kat2a and Kat2b are required for growth and differentiation of craniofacial cartilage and bone in both zebrafish and mice by regulating H3K9 acetylation. |
doi_str_mv | 10.3390/jdb6040027 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_feb9b02b0e7b46cc814d6b206c59e1e4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_feb9b02b0e7b46cc814d6b206c59e1e4</doaj_id><sourcerecordid>2582801654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53</originalsourceid><addsrcrecordid>eNpdkt9rFDEQxxdRbKl98Q-QBV9EOM3vzb4I9fxVrAiiL76ESTK55tjb1CRXOP96d-9qbc1LhplPvvOdME3zlJJXnPfk9dpbRQQhrHvQHDPG6IJ3sn94Jz5qTktZk-n0lGtBHzdHnAgmpCbHze_PUBm0MPp2jmx75rDuhpphLAEzFJwyNV7Humu_4Wo7QMXSLqdyTAFchKFdQq5xgBXuVd6mEdt3MUyPcawRakxjG8f2J9oMIZbLPfUlOnzSPAowFDy9uU-aHx_ef19-Wlx8_Xi-PLtYONGxughaoFKTWS1dbynrpWXaU62kpRKU10qwzmPgGIRiXgoH1DPiRGC0U0Hyk-b8oOsTrM1VjhvIO5Mgmn0i5ZWZJ3ADmoC2t4RZgp0VyjlNhVeWEeVkjxTFpPXmoHW1tRv0bhoxw3BP9H5ljJdmla6N4lRKMZt5cSOQ068tlmo2sTgcBhgxbYthlHPBu76fez3_D12nbR6nrzJMaqYJVXKmXh4ol1MpGcOtGUrMvCHm34ZM8LO79m_Rv_vA_wDb07Z-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582801654</pqid></control><display><type>article</type><title>Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Sen, Rwik ; Pezoa, Sofia A ; Carpio Shull, Lomeli ; Hernandez-Lagunas, Laura ; Niswander, Lee A ; Artinger, Kristin Bruk</creator><creatorcontrib>Sen, Rwik ; Pezoa, Sofia A ; Carpio Shull, Lomeli ; Hernandez-Lagunas, Laura ; Niswander, Lee A ; Artinger, Kristin Bruk</creatorcontrib><description>Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to give rise to the different shapes and sizes of the bone and cartilage. Epigenetic regulators are good candidates to be involved in this regulation, since they can exert both broad as well as precise control on pattern formation. Here, we investigated the role of the histone acetyltransferases Kat2a and Kat2b in craniofacial development using TALEN/CRISPR/Cas9 mutagenesis in zebrafish and the
(also called
) allele in mice.
and
are broadly expressed during embryogenesis within the central nervous system and craniofacial region. Single and double
and
zebrafish mutants have an overall shortening and hypoplastic nature of the cartilage elements and disruption of the posterior ceratobranchial cartilages, likely due to smaller domains of expression of both cartilage- and bone-specific markers, including
and
, and
and
, respectively. Similarly, in mice we observe defects in the craniofacial skeleton, including hypoplastic bone and cartilage and altered expression of
and cartilage markers (
,
). In addition, we determined that following the loss of Kat2a activity, overall histone 3 lysine 9 (H3K9) acetylation, the main epigenetic target of Kat2a/Kat2b, was decreased. These results suggest that Kat2a and Kat2b are required for growth and differentiation of craniofacial cartilage and bone in both zebrafish and mice by regulating H3K9 acetylation.</description><identifier>ISSN: 2221-3759</identifier><identifier>EISSN: 2221-3759</identifier><identifier>DOI: 10.3390/jdb6040027</identifier><identifier>PMID: 30424580</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acetylation ; Acetyltransferase ; Bones ; Cartilage ; Cbfa-1 protein ; Cell differentiation ; Central nervous system ; cranial neural crest cells ; Craniofacial growth ; craniofacial skeleton ; CRISPR ; Danio rerio ; DNA methylation ; Embryogenesis ; Embryos ; Enzymes ; Epigenetics ; GCN5 ; Gene expression ; Genomes ; Heart ; histone H3K9 acetylation ; Histones ; Lysine ; Mutagenesis ; Mutation ; Neural crest ; Pattern formation ; PCAF ; RNA polymerase ; Skeleton ; Skull ; Sox9 protein ; Vertebrates ; Zebrafish</subject><ispartof>Journal of developmental biology, 2018-11, Vol.6 (4), p.27</ispartof><rights>2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53</citedby><cites>FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53</cites><orcidid>0000-0002-3003-6042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2582801654/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2582801654?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30424580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sen, Rwik</creatorcontrib><creatorcontrib>Pezoa, Sofia A</creatorcontrib><creatorcontrib>Carpio Shull, Lomeli</creatorcontrib><creatorcontrib>Hernandez-Lagunas, Laura</creatorcontrib><creatorcontrib>Niswander, Lee A</creatorcontrib><creatorcontrib>Artinger, Kristin Bruk</creatorcontrib><title>Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice</title><title>Journal of developmental biology</title><addtitle>J Dev Biol</addtitle><description>Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to give rise to the different shapes and sizes of the bone and cartilage. Epigenetic regulators are good candidates to be involved in this regulation, since they can exert both broad as well as precise control on pattern formation. Here, we investigated the role of the histone acetyltransferases Kat2a and Kat2b in craniofacial development using TALEN/CRISPR/Cas9 mutagenesis in zebrafish and the
(also called
) allele in mice.
and
are broadly expressed during embryogenesis within the central nervous system and craniofacial region. Single and double
and
zebrafish mutants have an overall shortening and hypoplastic nature of the cartilage elements and disruption of the posterior ceratobranchial cartilages, likely due to smaller domains of expression of both cartilage- and bone-specific markers, including
and
, and
and
, respectively. Similarly, in mice we observe defects in the craniofacial skeleton, including hypoplastic bone and cartilage and altered expression of
and cartilage markers (
,
). In addition, we determined that following the loss of Kat2a activity, overall histone 3 lysine 9 (H3K9) acetylation, the main epigenetic target of Kat2a/Kat2b, was decreased. These results suggest that Kat2a and Kat2b are required for growth and differentiation of craniofacial cartilage and bone in both zebrafish and mice by regulating H3K9 acetylation.</description><subject>Acetylation</subject><subject>Acetyltransferase</subject><subject>Bones</subject><subject>Cartilage</subject><subject>Cbfa-1 protein</subject><subject>Cell differentiation</subject><subject>Central nervous system</subject><subject>cranial neural crest cells</subject><subject>Craniofacial growth</subject><subject>craniofacial skeleton</subject><subject>CRISPR</subject><subject>Danio rerio</subject><subject>DNA methylation</subject><subject>Embryogenesis</subject><subject>Embryos</subject><subject>Enzymes</subject><subject>Epigenetics</subject><subject>GCN5</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Heart</subject><subject>histone H3K9 acetylation</subject><subject>Histones</subject><subject>Lysine</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Neural crest</subject><subject>Pattern formation</subject><subject>PCAF</subject><subject>RNA polymerase</subject><subject>Skeleton</subject><subject>Skull</subject><subject>Sox9 protein</subject><subject>Vertebrates</subject><subject>Zebrafish</subject><issn>2221-3759</issn><issn>2221-3759</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt9rFDEQxxdRbKl98Q-QBV9EOM3vzb4I9fxVrAiiL76ESTK55tjb1CRXOP96d-9qbc1LhplPvvOdME3zlJJXnPfk9dpbRQQhrHvQHDPG6IJ3sn94Jz5qTktZk-n0lGtBHzdHnAgmpCbHze_PUBm0MPp2jmx75rDuhpphLAEzFJwyNV7Humu_4Wo7QMXSLqdyTAFchKFdQq5xgBXuVd6mEdt3MUyPcawRakxjG8f2J9oMIZbLPfUlOnzSPAowFDy9uU-aHx_ef19-Wlx8_Xi-PLtYONGxughaoFKTWS1dbynrpWXaU62kpRKU10qwzmPgGIRiXgoH1DPiRGC0U0Hyk-b8oOsTrM1VjhvIO5Mgmn0i5ZWZJ3ADmoC2t4RZgp0VyjlNhVeWEeVkjxTFpPXmoHW1tRv0bhoxw3BP9H5ljJdmla6N4lRKMZt5cSOQ068tlmo2sTgcBhgxbYthlHPBu76fez3_D12nbR6nrzJMaqYJVXKmXh4ol1MpGcOtGUrMvCHm34ZM8LO79m_Rv_vA_wDb07Z-</recordid><startdate>20181112</startdate><enddate>20181112</enddate><creator>Sen, Rwik</creator><creator>Pezoa, Sofia A</creator><creator>Carpio Shull, Lomeli</creator><creator>Hernandez-Lagunas, Laura</creator><creator>Niswander, Lee A</creator><creator>Artinger, Kristin Bruk</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3003-6042</orcidid></search><sort><creationdate>20181112</creationdate><title>Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice</title><author>Sen, Rwik ; Pezoa, Sofia A ; Carpio Shull, Lomeli ; Hernandez-Lagunas, Laura ; Niswander, Lee A ; Artinger, Kristin Bruk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylation</topic><topic>Acetyltransferase</topic><topic>Bones</topic><topic>Cartilage</topic><topic>Cbfa-1 protein</topic><topic>Cell differentiation</topic><topic>Central nervous system</topic><topic>cranial neural crest cells</topic><topic>Craniofacial growth</topic><topic>craniofacial skeleton</topic><topic>CRISPR</topic><topic>Danio rerio</topic><topic>DNA methylation</topic><topic>Embryogenesis</topic><topic>Embryos</topic><topic>Enzymes</topic><topic>Epigenetics</topic><topic>GCN5</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Heart</topic><topic>histone H3K9 acetylation</topic><topic>Histones</topic><topic>Lysine</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Neural crest</topic><topic>Pattern formation</topic><topic>PCAF</topic><topic>RNA polymerase</topic><topic>Skeleton</topic><topic>Skull</topic><topic>Sox9 protein</topic><topic>Vertebrates</topic><topic>Zebrafish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sen, Rwik</creatorcontrib><creatorcontrib>Pezoa, Sofia A</creatorcontrib><creatorcontrib>Carpio Shull, Lomeli</creatorcontrib><creatorcontrib>Hernandez-Lagunas, Laura</creatorcontrib><creatorcontrib>Niswander, Lee A</creatorcontrib><creatorcontrib>Artinger, Kristin Bruk</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sen, Rwik</au><au>Pezoa, Sofia A</au><au>Carpio Shull, Lomeli</au><au>Hernandez-Lagunas, Laura</au><au>Niswander, Lee A</au><au>Artinger, Kristin Bruk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice</atitle><jtitle>Journal of developmental biology</jtitle><addtitle>J Dev Biol</addtitle><date>2018-11-12</date><risdate>2018</risdate><volume>6</volume><issue>4</issue><spage>27</spage><pages>27-</pages><issn>2221-3759</issn><eissn>2221-3759</eissn><abstract>Cranial neural crest cells undergo cellular growth, patterning, and differentiation within the branchial arches to form cartilage and bone, resulting in a precise pattern of skeletal elements forming the craniofacial skeleton. However, it is unclear how cranial neural crest cells are regulated to give rise to the different shapes and sizes of the bone and cartilage. Epigenetic regulators are good candidates to be involved in this regulation, since they can exert both broad as well as precise control on pattern formation. Here, we investigated the role of the histone acetyltransferases Kat2a and Kat2b in craniofacial development using TALEN/CRISPR/Cas9 mutagenesis in zebrafish and the
(also called
) allele in mice.
and
are broadly expressed during embryogenesis within the central nervous system and craniofacial region. Single and double
and
zebrafish mutants have an overall shortening and hypoplastic nature of the cartilage elements and disruption of the posterior ceratobranchial cartilages, likely due to smaller domains of expression of both cartilage- and bone-specific markers, including
and
, and
and
, respectively. Similarly, in mice we observe defects in the craniofacial skeleton, including hypoplastic bone and cartilage and altered expression of
and cartilage markers (
,
). In addition, we determined that following the loss of Kat2a activity, overall histone 3 lysine 9 (H3K9) acetylation, the main epigenetic target of Kat2a/Kat2b, was decreased. These results suggest that Kat2a and Kat2b are required for growth and differentiation of craniofacial cartilage and bone in both zebrafish and mice by regulating H3K9 acetylation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>30424580</pmid><doi>10.3390/jdb6040027</doi><orcidid>https://orcid.org/0000-0002-3003-6042</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2221-3759 |
ispartof | Journal of developmental biology, 2018-11, Vol.6 (4), p.27 |
issn | 2221-3759 2221-3759 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_feb9b02b0e7b46cc814d6b206c59e1e4 |
source | Publicly Available Content Database; PubMed Central |
subjects | Acetylation Acetyltransferase Bones Cartilage Cbfa-1 protein Cell differentiation Central nervous system cranial neural crest cells Craniofacial growth craniofacial skeleton CRISPR Danio rerio DNA methylation Embryogenesis Embryos Enzymes Epigenetics GCN5 Gene expression Genomes Heart histone H3K9 acetylation Histones Lysine Mutagenesis Mutation Neural crest Pattern formation PCAF RNA polymerase Skeleton Skull Sox9 protein Vertebrates Zebrafish |
title | Kat2a and Kat2b Acetyltransferase Activity Regulates Craniofacial Cartilage and Bone Differentiation in Zebrafish and Mice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A43%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kat2a%20and%20Kat2b%20Acetyltransferase%20Activity%20Regulates%20Craniofacial%20Cartilage%20and%20Bone%20Differentiation%20in%20Zebrafish%20and%20Mice&rft.jtitle=Journal%20of%20developmental%20biology&rft.au=Sen,%20Rwik&rft.date=2018-11-12&rft.volume=6&rft.issue=4&rft.spage=27&rft.pages=27-&rft.issn=2221-3759&rft.eissn=2221-3759&rft_id=info:doi/10.3390/jdb6040027&rft_dat=%3Cproquest_doaj_%3E2582801654%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-f84e6658085c9b1295b28d1865b15a6d86427def3ef462d54ca1d20c4f2176f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582801654&rft_id=info:pmid/30424580&rfr_iscdi=true |