Loading…
Explicit Multistep Mixed Finite Element Method for RLW Equation
An explicit multistep mixed finite element method is proposed and discussed for regularized long wave (RLW) equation. The spatial direction is approximated by the mixed Galerkin method using mixed linear space finite elements, and the time direction is discretized by the explicit multistep method. T...
Saved in:
Published in: | Abstract and Applied Analysis 2013-01, Vol.2013 (2013), p.471-482-1046 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a591t-51f0ec0eb540b5cd0eddd5c8466621e8c2753893489a726a0d066670d800cb43 |
---|---|
cites | cdi_FETCH-LOGICAL-a591t-51f0ec0eb540b5cd0eddd5c8466621e8c2753893489a726a0d066670d800cb43 |
container_end_page | 482-1046 |
container_issue | 2013 |
container_start_page | 471 |
container_title | Abstract and Applied Analysis |
container_volume | 2013 |
creator | Liu, Yang Li, Hong Du, Yanwei Wang, Jinfeng |
description | An explicit multistep mixed finite element method is proposed and discussed for regularized long wave (RLW) equation. The spatial direction is approximated by the mixed Galerkin method using mixed linear space finite elements, and the time direction is discretized by the explicit multistep method. The optimal error estimates in L2 and H1 norms for the scalar unknown u and its flux q=ux based on time explicit multistep method are derived. Some numerical results are given to verify our theoretical analysis and illustrate the efficiency of our method. |
doi_str_mv | 10.1155/2013/768976 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_feffd27b5669486ca7b6274938fc012b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A369794787</galeid><airiti_id>P20160825001_201312_201609070065_201609070065_471_482_1046</airiti_id><doaj_id>oai_doaj_org_article_feffd27b5669486ca7b6274938fc012b</doaj_id><sourcerecordid>A369794787</sourcerecordid><originalsourceid>FETCH-LOGICAL-a591t-51f0ec0eb540b5cd0eddd5c8466621e8c2753893489a726a0d066670d800cb43</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhUcIJEphxRppJHZUaa_f9gqqKIVKqXioiKXl8aN1NBmnHkeUf4-TiYK6Ql7YPufcT9e-TfMWwTlCjF1gQORCcKkEf9acIC7FDCio5_UMks0IEexl82ocVwBABKUnzcfF46aPNpb2ZtuXOBa_aW_io3ftVRxi8e2i92s_VNuX--TakHL7Y_mrXTxsTYlpeN28CKYf_ZvDftrcXi1u519my6-fr-eXy5lhCpUZQwG8Bd8xCh2zDrxzjllJOecYeWmxYEQqQqUyAnMDDqojwEkA21Fy2lxPWJfMSm9yXJv8RycT9V5I-U6bXKLtvQ4-BIdFxzhXVHJrRMexoIrIYAHhrrI-TaxNTitvi9_aPron0PnP5UE9bMYYjYgiDCEFvCLeHxEPWz8WvUrbPNQP0IhSCowi2DV9PqXuTO0rDiGVbGxdzq-jTYMPseqXhCuhqJCiFpxNBTanccw-HJtCoHcD1rsB62nANf1hSt_HwZnf8T_hd1PY14gP5himSmBFqv998k3MscR_7_lWKRwkZgBoT0RY7yUFAoCzpxcqkKYS1xYoJ38BHDrBog</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444054104</pqid></control><display><type>article</type><title>Explicit Multistep Mixed Finite Element Method for RLW Equation</title><source>Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Liu, Yang ; Li, Hong ; Du, Yanwei ; Wang, Jinfeng</creator><contributor>Donatelli, Marco</contributor><creatorcontrib>Liu, Yang ; Li, Hong ; Du, Yanwei ; Wang, Jinfeng ; Donatelli, Marco</creatorcontrib><description>An explicit multistep mixed finite element method is proposed and discussed for regularized long wave (RLW) equation. The spatial direction is approximated by the mixed Galerkin method using mixed linear space finite elements, and the time direction is discretized by the explicit multistep method. The optimal error estimates in L2 and H1 norms for the scalar unknown u and its flux q=ux based on time explicit multistep method are derived. Some numerical results are given to verify our theoretical analysis and illustrate the efficiency of our method.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/2013/768976</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><subject>Analysis ; Boundary conditions ; Finite element analysis ; Finite element method ; Fluid dynamics ; Mathematical models ; Mathematical research ; Methods ; Numerical analysis ; Partial differential equations ; Studies ; Vector spaces ; Wave equation</subject><ispartof>Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.471-482-1046</ispartof><rights>Copyright © 2013 Yang Liu et al.</rights><rights>COPYRIGHT 2013 John Wiley & Sons, Inc.</rights><rights>Copyright © 2013 Yang Liu et al. Yang Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><rights>Copyright 2013 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a591t-51f0ec0eb540b5cd0eddd5c8466621e8c2753893489a726a0d066670d800cb43</citedby><cites>FETCH-LOGICAL-a591t-51f0ec0eb540b5cd0eddd5c8466621e8c2753893489a726a0d066670d800cb43</cites><orcidid>0000-0001-8218-0196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1444054104/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1444054104?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Donatelli, Marco</contributor><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Du, Yanwei</creatorcontrib><creatorcontrib>Wang, Jinfeng</creatorcontrib><title>Explicit Multistep Mixed Finite Element Method for RLW Equation</title><title>Abstract and Applied Analysis</title><description>An explicit multistep mixed finite element method is proposed and discussed for regularized long wave (RLW) equation. The spatial direction is approximated by the mixed Galerkin method using mixed linear space finite elements, and the time direction is discretized by the explicit multistep method. The optimal error estimates in L2 and H1 norms for the scalar unknown u and its flux q=ux based on time explicit multistep method are derived. Some numerical results are given to verify our theoretical analysis and illustrate the efficiency of our method.</description><subject>Analysis</subject><subject>Boundary conditions</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Fluid dynamics</subject><subject>Mathematical models</subject><subject>Mathematical research</subject><subject>Methods</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Studies</subject><subject>Vector spaces</subject><subject>Wave equation</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkUtvEzEUhUcIJEphxRppJHZUaa_f9gqqKIVKqXioiKXl8aN1NBmnHkeUf4-TiYK6Ql7YPufcT9e-TfMWwTlCjF1gQORCcKkEf9acIC7FDCio5_UMks0IEexl82ocVwBABKUnzcfF46aPNpb2ZtuXOBa_aW_io3ftVRxi8e2i92s_VNuX--TakHL7Y_mrXTxsTYlpeN28CKYf_ZvDftrcXi1u519my6-fr-eXy5lhCpUZQwG8Bd8xCh2zDrxzjllJOecYeWmxYEQqQqUyAnMDDqojwEkA21Fy2lxPWJfMSm9yXJv8RycT9V5I-U6bXKLtvQ4-BIdFxzhXVHJrRMexoIrIYAHhrrI-TaxNTitvi9_aPron0PnP5UE9bMYYjYgiDCEFvCLeHxEPWz8WvUrbPNQP0IhSCowi2DV9PqXuTO0rDiGVbGxdzq-jTYMPseqXhCuhqJCiFpxNBTanccw-HJtCoHcD1rsB62nANf1hSt_HwZnf8T_hd1PY14gP5himSmBFqv998k3MscR_7_lWKRwkZgBoT0RY7yUFAoCzpxcqkKYS1xYoJ38BHDrBog</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Liu, Yang</creator><creator>Li, Hong</creator><creator>Du, Yanwei</creator><creator>Wang, Jinfeng</creator><general>Hindawi Limiteds</general><general>Hindawi Puplishing Corporation</general><general>Hindawi Publishing Corporation</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8218-0196</orcidid></search><sort><creationdate>20130101</creationdate><title>Explicit Multistep Mixed Finite Element Method for RLW Equation</title><author>Liu, Yang ; Li, Hong ; Du, Yanwei ; Wang, Jinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a591t-51f0ec0eb540b5cd0eddd5c8466621e8c2753893489a726a0d066670d800cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Boundary conditions</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Fluid dynamics</topic><topic>Mathematical models</topic><topic>Mathematical research</topic><topic>Methods</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Studies</topic><topic>Vector spaces</topic><topic>Wave equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Du, Yanwei</creatorcontrib><creatorcontrib>Wang, Jinfeng</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yang</au><au>Li, Hong</au><au>Du, Yanwei</au><au>Wang, Jinfeng</au><au>Donatelli, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit Multistep Mixed Finite Element Method for RLW Equation</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>471</spage><epage>482-1046</epage><pages>471-482-1046</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>An explicit multistep mixed finite element method is proposed and discussed for regularized long wave (RLW) equation. The spatial direction is approximated by the mixed Galerkin method using mixed linear space finite elements, and the time direction is discretized by the explicit multistep method. The optimal error estimates in L2 and H1 norms for the scalar unknown u and its flux q=ux based on time explicit multistep method are derived. Some numerical results are given to verify our theoretical analysis and illustrate the efficiency of our method.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2013/768976</doi><orcidid>https://orcid.org/0000-0001-8218-0196</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and Applied Analysis, 2013-01, Vol.2013 (2013), p.471-482-1046 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_feffd27b5669486ca7b6274938fc012b |
source | Publicly Available Content Database; Wiley Open Access |
subjects | Analysis Boundary conditions Finite element analysis Finite element method Fluid dynamics Mathematical models Mathematical research Methods Numerical analysis Partial differential equations Studies Vector spaces Wave equation |
title | Explicit Multistep Mixed Finite Element Method for RLW Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A10%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20Multistep%20Mixed%20Finite%20Element%20Method%20for%20RLW%20Equation&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Liu,%20Yang&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=471&rft.epage=482-1046&rft.pages=471-482-1046&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/2013/768976&rft_dat=%3Cgale_doaj_%3EA369794787%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a591t-51f0ec0eb540b5cd0eddd5c8466621e8c2753893489a726a0d066670d800cb43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1444054104&rft_id=info:pmid/&rft_galeid=A369794787&rft_airiti_id=P20160825001_201312_201609070065_201609070065_471_482_1046&rfr_iscdi=true |