Loading…
Metal-N4@Graphene as Multifunctional Anchoring Materials for Na-S Batteries: First-Principles Study
Developing highly efficient anchoring materials to suppress sodium polysulfides (NaPSs) shuttling is vital for the practical applications of sodium sulfur (Na-S) batteries. Herein, we systematically investigated pristine graphene and metal-N4@graphene (metal = Fe, Co, and Mn) as host materials for s...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2021-05, Vol.11 (5), p.1197 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Developing highly efficient anchoring materials to suppress sodium polysulfides (NaPSs) shuttling is vital for the practical applications of sodium sulfur (Na-S) batteries. Herein, we systematically investigated pristine graphene and metal-N4@graphene (metal = Fe, Co, and Mn) as host materials for sulfur cathode to adsorb NaPSs via first-principles theory calculations. The computing results reveal that Fe-N4@graphene is a fairly promising anchoring material, in which the formed chemical bonds of Fe-S and N-Na ensure the stable adsorption of NaPSs. Furthermore, the doped transition metal iron could not only dramatically enhance the electronic conductivity and the adsorption strength of soluble NaPSs, but also significantly lower the decomposition energies of Na2S and Na2S2 on the surface of Fe-N4@graphene, which could effectively promote the full discharge of Na-S batteries. Our research provides a deep insight into the mechanism of anchoring and electrocatalytic effect of Fe-N4@graphene in sulfur cathode, which would be beneficial for the development of high-performance Na-S batteries. |
---|---|
ISSN: | 2079-4991 2079-4991 |
DOI: | 10.3390/nano11051197 |