Loading…

Optimization of regular offshore wind-power plants using a non-discrete evolutionary algorithm

Offshore wind farms (OWFs) often present a regular configuration mainly due to aesthetical considerations. This paper presents a new evolutionary algorithm that optimizes the location, configuration and orientation of a rhomboid-shape OWF. Existing optimization algorithms were based on dividing the...

Full description

Saved in:
Bibliographic Details
Published in:AIMS energy 2017-01, Vol.5 (2), p.173-192
Main Authors: G. Gonzalez-Rodriguez, Angel, Burgos Payan, Manuel, Riquelme Santos, Jesús, Serrano Gonzalez, Javier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Offshore wind farms (OWFs) often present a regular configuration mainly due to aesthetical considerations. This paper presents a new evolutionary algorithm that optimizes the location, configuration and orientation of a rhomboid-shape OWF. Existing optimization algorithms were based on dividing the available space into a mess of cells and forcing the turbines to be located in the centre of a cell. However, the presented algorithm searches for the optimum within a continuous range of the eight parameters that define the OWF, which allows including a gradient-based local search operator to improve the optimization process. The study starts from a review of the economic data available in the bibliography relative to the most significant issues influencing the profitability of the investment in terms of the Internal Rate of Return (IRR). In order to address the distinctive characteristics of OWFs, specific issues arise which have been solved. The most important ones are: interpretation of nautical charts, utilization of the seabed map with different load-bearing capacities, and location of the shoreline transition.
ISSN:2333-8334
DOI:10.3934/energy.2017.2.173