Loading…

A Commodity Classification Framework Based on Machine Learning for Analysis of Trade Declaration

Text, voice, images and videos can express some intentions and facts in daily life. By understanding these contents, people can identify and analyze some behaviors. This paper focuses on the commodity trade declaration process and identifies the commodity categories based on text information on cust...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) 2021-06, Vol.13 (6), p.964
Main Authors: He, Mingshu, Wang, Xiaojuan, Zou, Chundong, Dai, Bingying, Jin, Lei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Text, voice, images and videos can express some intentions and facts in daily life. By understanding these contents, people can identify and analyze some behaviors. This paper focuses on the commodity trade declaration process and identifies the commodity categories based on text information on customs declarations. Although the technology of text recognition is mature in many application fields, there are few studies on the classification and recognition of customs declaration goods. In this paper, we proposed a classification framework based on machine learning (ML) models for commodity trade declaration that reaches a high rate of accuracy. This paper also proposed a symmetrical decision fusion method for this task based on convolutional neural network (CNN) and transformer. The experimental results show that the fusion model can make up for the shortcomings of the two original models and some improvements have been made. In the two datasets used in this paper, the accuracy can reach 88% and 99%, respectively. To promote the development of study of customs declaration business and Chinese text recognition, we also exposed the proprietary datasets used in this study.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym13060964