Loading…
Sample Entropy on Multidistance Signal Level Difference for Epileptic EEG Classification
Epilepsy is a disorder of the brain’s nerves as a result of excessive brain cell activity. It is generally characterized by the recurrent unprovoked seizures. This neurological abnormality can be detected and evaluated using Electroencephalogram (EEG) signal. Many algorithms have been applied to ach...
Saved in:
Published in: | TheScientificWorld 2018, Vol.2018 (2018), p.1-6 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Epilepsy is a disorder of the brain’s nerves as a result of excessive brain cell activity. It is generally characterized by the recurrent unprovoked seizures. This neurological abnormality can be detected and evaluated using Electroencephalogram (EEG) signal. Many algorithms have been applied to achieve high performance for the EEG classification of epileptic. However, the complexity and randomness of EEG signals become a challenge to researchers in applying the appropriate algorithms. In this research, sample entropy on Multidistance Signal Level Difference (MSLD) was applied to obtain the characteristic of EEG signals, especially towards the epilepsy patients. The test was performed on three classes of EEG data: EEG signals of epilepsy patient in ictal (seizure), interictal conditions (occurring between seizures) and normal EEG signals from healthy subjects with a closed eye condition. In this study, classification and verification were done using the Support Vector Machine (SVM) method. Through the 5-fold cross-validation, experimental results showed the highest accuracy of 97.7%. |
---|---|
ISSN: | 2356-6140 1537-744X 1537-744X |
DOI: | 10.1155/2018/8463256 |