Loading…

Mild and Fast Construction of Ni-Based Electrodes for Industrial-Grade Water Splitting

Achieving high−efficiency and stable hydrogen evolution from water splitting is a great challenge. Herein, a facilely prepared two−dimenssional self−supported catalytic electrode with excellent stability is constructed for large−scale hydrogen production from alkaline simulated seawater. The bifunct...

Full description

Saved in:
Bibliographic Details
Published in:Inorganics 2023-04, Vol.11 (4), p.170
Main Authors: Lu, Zikang, Liang, Rikai, Shao, Yuqi, Hao, Weiju
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Achieving high−efficiency and stable hydrogen evolution from water splitting is a great challenge. Herein, a facilely prepared two−dimenssional self−supported catalytic electrode with excellent stability is constructed for large−scale hydrogen production from alkaline simulated seawater. The bifunctional catalytic electrode is prepared by a fast and mild one−step of sodium borohydride etching on a nickel foam (NF) substrate without adding other additives (NF@NiBx−3h). The overpotential of the hydrogen/oxygen evolution reaction (HER/OER) in alkaline−simulated seawater at 10 mA cm−2 is 96 mV and 261 mV. At 200 mA cm−2, the NF@NiBx−3h electrode shows good stability over 7 days throughout the water splitting process due to the corrosion resistance of the NF substrate, and strong adhesion between the Ni−B active material and the substrate. This work demonstrates a novel strategy for fabricating catalytic electrodes with high−performance, low cost and excellent stability.
ISSN:2304-6740
2304-6740
DOI:10.3390/inorganics11040170