Loading…
Facilely Synthesized NiCo2O4/NiCo2O4 Nanofile Arrays Supported on Nickel Foam by a Hydrothermal Method and Their Excellent Performance for High-Rate Supercapacitance
NiCo2O4 nanoleaf arrays (NCO NLAs) and NiCo2O4/NiCO2O4 nanofile arrays (NCO/NCO NFAs) material was fabricated on flexible nickel foam (NF) using a facile hydrothermal approach. The electrochemical performance, including the specific capacitance, charge/discharge cycles, and lifecycle of the material...
Saved in:
Published in: | Energies (Basel) 2019-04, Vol.12 (7), p.1308 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | NiCo2O4 nanoleaf arrays (NCO NLAs) and NiCo2O4/NiCO2O4 nanofile arrays (NCO/NCO NFAs) material was fabricated on flexible nickel foam (NF) using a facile hydrothermal approach. The electrochemical performance, including the specific capacitance, charge/discharge cycles, and lifecycle of the material after the hydrothermal treatment, was assessed. The morphological and structural behaviors of the NF@NCO NLAs and NF@NCO/NCO NFAs electrodes were analyzed using a range of analysis techniques. The as-obtained nanocomposite of the NF@NCO/NCO NFAs material delivered outstanding electrochemical performance, including an ultrahigh specific capacitance (Cs) of 2312 F g−1 at a current density of 2 mA cm−2, along with excellent cycling stability (98.7% capacitance retention after 5000 cycles at 5 mA cm−2). These values were higher than those of NF@NCO NLAs (Cs of 1950 F g−1 and 96.3% retention). The enhanced specific capacitance was attributed to the large electrochemical surface area, which allows for higher electrical conductivity and rapid transport between the electrons and ions as well as a much lower charge-transfer resistance and superior rate capability. These results clearly show that a combination of two types of binary metal oxides could be favorable for improving electrochemical performance and is expected to play a major role in the future development of nanofile-like composites (NF@NCO/NCO NFAs) for supercapacitor applications. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en12071308 |