Loading…

Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor

Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-08, Vol.14 (1), p.4953-4953, Article 4953
Main Authors: Shi, Jiaojian, Xu, Haowei, Heide, Christian, HuangFu, Changan, Xia, Chenyi, de Quesada, Felipe, Shen, Hongzhi, Zhang, Tianyi, Yu, Leo, Johnson, Amalya, Liu, Fang, Shi, Enzheng, Jiao, Liying, Heinz, Tony, Ghimire, Shambhu, Li, Ju, Kong, Jing, Guo, Yunfan, Lindenberg, Aaron M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3
cites cdi_FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3
container_end_page 4953
container_issue 1
container_start_page 4953
container_title Nature communications
container_volume 14
creator Shi, Jiaojian
Xu, Haowei
Heide, Christian
HuangFu, Changan
Xia, Chenyi
de Quesada, Felipe
Shen, Hongzhi
Zhang, Tianyi
Yu, Leo
Johnson, Amalya
Liu, Fang
Shi, Enzheng
Jiao, Liying
Heinz, Tony
Ghimire, Shambhu
Li, Ju
Kong, Jing
Guo, Yunfan
Lindenberg, Aaron M.
description Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials—the Janus transition metal dichalcogenides in the 1  T’ phase, synthesized by an advanced atomic-layer substitution method. High harmonic generation, terahertz emission spectroscopy, and second harmonic generation measurements consistently show orders-of-the-magnitude enhancement in terahertz-frequency nonlinearities in 1  T’ MoSSe (e.g., > 50 times higher than 2 H MoS 2 for 18 th order harmonic generation; > 20 times higher than 2 H MoS 2 for terahertz emission). We link this giant nonlinear optical response to topological band mixing and strong inversion symmetry breaking due to the Janus structure. Our work defines general protocols for designing materials with large nonlinearities and heralds the applications of topological materials in optoelectronics down to the monolayer limit. Electronic band topology may be leveraged to enhance nonlinear optical properties in monolayer semiconductors. Here, the authors report giant room-temperature nonlinearity enhancements in Janus transition metal dichalcogenides.
doi_str_mv 10.1038/s41467-023-40373-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ff4e5339ce724876ac82317cb8284361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ff4e5339ce724876ac82317cb8284361</doaj_id><sourcerecordid>2851515553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3</originalsourceid><addsrcrecordid>eNp9ks1u1TAQhSMEolXpC7CKYMMm4H87K4SqUooqsSlry3Emt64Sz8V2kNqnx7epgLLAXtiyz3wzOjpN85qS95Rw8yELKpTuCOOdIFzz7v5Zc8yIoB3VjD__637UnOZ8S-riPTVCvGyOuJZGU0aOm-uL4GJpE-LSFVj2kFxZE7QR4xwiuBRKgNyG2Lp2wYizu4PUfnVxzW3BPc64C97NbYYleIzj6gumV82Lyc0ZTh_Pk-b75_Prsy_d1beLy7NPV52XQpZuFGpSnCijp9GIQVHlKFNmmNhg6CgZ-EmPg1JK6MGP3BMple6d7g0fpl6P_KS53Lgjulu7T2Fx6c6iC_bhAdPOulSCn8FOkwDJee9BM2G0ct4wTrUfDDOCK1pZHzfWfh0WGD3Ektz8BPr0J4Ybu8OflhLBmZSyEt5sBMwl2OxDAX9TPYngi2XVfi1VFb17bJPwxwq52CVkD_PsIuCaLTOSVU9Ef5jo7T_SW1xTrIYeVLTu2rSq2KbyCXNOMP0emRJ7SIrdkmJrUuxDUux9LeJbUa7iuIP0B_2fql8Y-b-0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851515553</pqid></control><display><type>article</type><title>Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shi, Jiaojian ; Xu, Haowei ; Heide, Christian ; HuangFu, Changan ; Xia, Chenyi ; de Quesada, Felipe ; Shen, Hongzhi ; Zhang, Tianyi ; Yu, Leo ; Johnson, Amalya ; Liu, Fang ; Shi, Enzheng ; Jiao, Liying ; Heinz, Tony ; Ghimire, Shambhu ; Li, Ju ; Kong, Jing ; Guo, Yunfan ; Lindenberg, Aaron M.</creator><creatorcontrib>Shi, Jiaojian ; Xu, Haowei ; Heide, Christian ; HuangFu, Changan ; Xia, Chenyi ; de Quesada, Felipe ; Shen, Hongzhi ; Zhang, Tianyi ; Yu, Leo ; Johnson, Amalya ; Liu, Fang ; Shi, Enzheng ; Jiao, Liying ; Heinz, Tony ; Ghimire, Shambhu ; Li, Ju ; Kong, Jing ; Guo, Yunfan ; Lindenberg, Aaron M. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials—the Janus transition metal dichalcogenides in the 1  T’ phase, synthesized by an advanced atomic-layer substitution method. High harmonic generation, terahertz emission spectroscopy, and second harmonic generation measurements consistently show orders-of-the-magnitude enhancement in terahertz-frequency nonlinearities in 1  T’ MoSSe (e.g., &gt; 50 times higher than 2 H MoS 2 for 18 th order harmonic generation; &gt; 20 times higher than 2 H MoS 2 for terahertz emission). We link this giant nonlinear optical response to topological band mixing and strong inversion symmetry breaking due to the Janus structure. Our work defines general protocols for designing materials with large nonlinearities and heralds the applications of topological materials in optoelectronics down to the monolayer limit. Electronic band topology may be leveraged to enhance nonlinear optical properties in monolayer semiconductors. Here, the authors report giant room-temperature nonlinearity enhancements in Janus transition metal dichalcogenides.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-40373-z</identifier><identifier>PMID: 37587120</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 140/133 ; 639/301/1019/385 ; 639/624/400/3923 ; Broken symmetry ; Chalcogenides ; Emission measurements ; Emission spectroscopy ; Energy harvesting ; ENGINEERING ; High-harmonic generation ; Humanities and Social Sciences ; Molybdenum disulfide ; Monolayers ; multidisciplinary ; Nonlinear optics ; Nonlinear response ; Nonlinear systems ; Nonlinearity ; Optical materials ; Optical properties ; Optics ; Optoelectronics ; Room temperature ; Science ; Science (multidisciplinary) ; Second harmonic generation ; Spectroscopy ; Tensors ; Terahertz frequencies ; Topology ; Transition metal compounds</subject><ispartof>Nature communications, 2023-08, Vol.14 (1), p.4953-4953, Article 4953</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3</citedby><cites>FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3</cites><orcidid>0000-0002-7652-3241 ; 0000-0002-9604-984X ; 0000-0003-3233-7161 ; 0000-0002-1467-8328 ; 0000-0003-1803-3858 ; 0000-0002-2039-9915 ; 0000-0002-0260-951X ; 0000-0003-0551-1208 ; 0000-0002-5360-5738 ; 0000-0002-8998-3837 ; 0000-0002-6576-906X ; 0000-0002-7841-8058 ; 0000-0002-1703-6363 ; 0000000278418058 ; 000000029604984X ; 0000000220399915 ; 0000000289983837 ; 0000000214678328 ; 0000000305511208 ; 0000000318033858 ; 0000000332337161 ; 0000000253605738 ; 000000026576906X ; 000000020260951X ; 0000000217036363 ; 0000000276523241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2851515553/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2851515553?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2000756$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Jiaojian</creatorcontrib><creatorcontrib>Xu, Haowei</creatorcontrib><creatorcontrib>Heide, Christian</creatorcontrib><creatorcontrib>HuangFu, Changan</creatorcontrib><creatorcontrib>Xia, Chenyi</creatorcontrib><creatorcontrib>de Quesada, Felipe</creatorcontrib><creatorcontrib>Shen, Hongzhi</creatorcontrib><creatorcontrib>Zhang, Tianyi</creatorcontrib><creatorcontrib>Yu, Leo</creatorcontrib><creatorcontrib>Johnson, Amalya</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Shi, Enzheng</creatorcontrib><creatorcontrib>Jiao, Liying</creatorcontrib><creatorcontrib>Heinz, Tony</creatorcontrib><creatorcontrib>Ghimire, Shambhu</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Guo, Yunfan</creatorcontrib><creatorcontrib>Lindenberg, Aaron M.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials—the Janus transition metal dichalcogenides in the 1  T’ phase, synthesized by an advanced atomic-layer substitution method. High harmonic generation, terahertz emission spectroscopy, and second harmonic generation measurements consistently show orders-of-the-magnitude enhancement in terahertz-frequency nonlinearities in 1  T’ MoSSe (e.g., &gt; 50 times higher than 2 H MoS 2 for 18 th order harmonic generation; &gt; 20 times higher than 2 H MoS 2 for terahertz emission). We link this giant nonlinear optical response to topological band mixing and strong inversion symmetry breaking due to the Janus structure. Our work defines general protocols for designing materials with large nonlinearities and heralds the applications of topological materials in optoelectronics down to the monolayer limit. Electronic band topology may be leveraged to enhance nonlinear optical properties in monolayer semiconductors. Here, the authors report giant room-temperature nonlinearity enhancements in Janus transition metal dichalcogenides.</description><subject>140/125</subject><subject>140/133</subject><subject>639/301/1019/385</subject><subject>639/624/400/3923</subject><subject>Broken symmetry</subject><subject>Chalcogenides</subject><subject>Emission measurements</subject><subject>Emission spectroscopy</subject><subject>Energy harvesting</subject><subject>ENGINEERING</subject><subject>High-harmonic generation</subject><subject>Humanities and Social Sciences</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>multidisciplinary</subject><subject>Nonlinear optics</subject><subject>Nonlinear response</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Optical materials</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Optoelectronics</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Second harmonic generation</subject><subject>Spectroscopy</subject><subject>Tensors</subject><subject>Terahertz frequencies</subject><subject>Topology</subject><subject>Transition metal compounds</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1TAQhSMEolXpC7CKYMMm4H87K4SqUooqsSlry3Emt64Sz8V2kNqnx7epgLLAXtiyz3wzOjpN85qS95Rw8yELKpTuCOOdIFzz7v5Zc8yIoB3VjD__637UnOZ8S-riPTVCvGyOuJZGU0aOm-uL4GJpE-LSFVj2kFxZE7QR4xwiuBRKgNyG2Lp2wYizu4PUfnVxzW3BPc64C97NbYYleIzj6gumV82Lyc0ZTh_Pk-b75_Prsy_d1beLy7NPV52XQpZuFGpSnCijp9GIQVHlKFNmmNhg6CgZ-EmPg1JK6MGP3BMple6d7g0fpl6P_KS53Lgjulu7T2Fx6c6iC_bhAdPOulSCn8FOkwDJee9BM2G0ct4wTrUfDDOCK1pZHzfWfh0WGD3Ektz8BPr0J4Ybu8OflhLBmZSyEt5sBMwl2OxDAX9TPYngi2XVfi1VFb17bJPwxwq52CVkD_PsIuCaLTOSVU9Ef5jo7T_SW1xTrIYeVLTu2rSq2KbyCXNOMP0emRJ7SIrdkmJrUuxDUux9LeJbUa7iuIP0B_2fql8Y-b-0</recordid><startdate>20230816</startdate><enddate>20230816</enddate><creator>Shi, Jiaojian</creator><creator>Xu, Haowei</creator><creator>Heide, Christian</creator><creator>HuangFu, Changan</creator><creator>Xia, Chenyi</creator><creator>de Quesada, Felipe</creator><creator>Shen, Hongzhi</creator><creator>Zhang, Tianyi</creator><creator>Yu, Leo</creator><creator>Johnson, Amalya</creator><creator>Liu, Fang</creator><creator>Shi, Enzheng</creator><creator>Jiao, Liying</creator><creator>Heinz, Tony</creator><creator>Ghimire, Shambhu</creator><creator>Li, Ju</creator><creator>Kong, Jing</creator><creator>Guo, Yunfan</creator><creator>Lindenberg, Aaron M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7652-3241</orcidid><orcidid>https://orcid.org/0000-0002-9604-984X</orcidid><orcidid>https://orcid.org/0000-0003-3233-7161</orcidid><orcidid>https://orcid.org/0000-0002-1467-8328</orcidid><orcidid>https://orcid.org/0000-0003-1803-3858</orcidid><orcidid>https://orcid.org/0000-0002-2039-9915</orcidid><orcidid>https://orcid.org/0000-0002-0260-951X</orcidid><orcidid>https://orcid.org/0000-0003-0551-1208</orcidid><orcidid>https://orcid.org/0000-0002-5360-5738</orcidid><orcidid>https://orcid.org/0000-0002-8998-3837</orcidid><orcidid>https://orcid.org/0000-0002-6576-906X</orcidid><orcidid>https://orcid.org/0000-0002-7841-8058</orcidid><orcidid>https://orcid.org/0000-0002-1703-6363</orcidid><orcidid>https://orcid.org/0000000278418058</orcidid><orcidid>https://orcid.org/000000029604984X</orcidid><orcidid>https://orcid.org/0000000220399915</orcidid><orcidid>https://orcid.org/0000000289983837</orcidid><orcidid>https://orcid.org/0000000214678328</orcidid><orcidid>https://orcid.org/0000000305511208</orcidid><orcidid>https://orcid.org/0000000318033858</orcidid><orcidid>https://orcid.org/0000000332337161</orcidid><orcidid>https://orcid.org/0000000253605738</orcidid><orcidid>https://orcid.org/000000026576906X</orcidid><orcidid>https://orcid.org/000000020260951X</orcidid><orcidid>https://orcid.org/0000000217036363</orcidid><orcidid>https://orcid.org/0000000276523241</orcidid></search><sort><creationdate>20230816</creationdate><title>Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor</title><author>Shi, Jiaojian ; Xu, Haowei ; Heide, Christian ; HuangFu, Changan ; Xia, Chenyi ; de Quesada, Felipe ; Shen, Hongzhi ; Zhang, Tianyi ; Yu, Leo ; Johnson, Amalya ; Liu, Fang ; Shi, Enzheng ; Jiao, Liying ; Heinz, Tony ; Ghimire, Shambhu ; Li, Ju ; Kong, Jing ; Guo, Yunfan ; Lindenberg, Aaron M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>140/125</topic><topic>140/133</topic><topic>639/301/1019/385</topic><topic>639/624/400/3923</topic><topic>Broken symmetry</topic><topic>Chalcogenides</topic><topic>Emission measurements</topic><topic>Emission spectroscopy</topic><topic>Energy harvesting</topic><topic>ENGINEERING</topic><topic>High-harmonic generation</topic><topic>Humanities and Social Sciences</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>multidisciplinary</topic><topic>Nonlinear optics</topic><topic>Nonlinear response</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Optical materials</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Optoelectronics</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Second harmonic generation</topic><topic>Spectroscopy</topic><topic>Tensors</topic><topic>Terahertz frequencies</topic><topic>Topology</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jiaojian</creatorcontrib><creatorcontrib>Xu, Haowei</creatorcontrib><creatorcontrib>Heide, Christian</creatorcontrib><creatorcontrib>HuangFu, Changan</creatorcontrib><creatorcontrib>Xia, Chenyi</creatorcontrib><creatorcontrib>de Quesada, Felipe</creatorcontrib><creatorcontrib>Shen, Hongzhi</creatorcontrib><creatorcontrib>Zhang, Tianyi</creatorcontrib><creatorcontrib>Yu, Leo</creatorcontrib><creatorcontrib>Johnson, Amalya</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Shi, Enzheng</creatorcontrib><creatorcontrib>Jiao, Liying</creatorcontrib><creatorcontrib>Heinz, Tony</creatorcontrib><creatorcontrib>Ghimire, Shambhu</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Guo, Yunfan</creatorcontrib><creatorcontrib>Lindenberg, Aaron M.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jiaojian</au><au>Xu, Haowei</au><au>Heide, Christian</au><au>HuangFu, Changan</au><au>Xia, Chenyi</au><au>de Quesada, Felipe</au><au>Shen, Hongzhi</au><au>Zhang, Tianyi</au><au>Yu, Leo</au><au>Johnson, Amalya</au><au>Liu, Fang</au><au>Shi, Enzheng</au><au>Jiao, Liying</au><au>Heinz, Tony</au><au>Ghimire, Shambhu</au><au>Li, Ju</au><au>Kong, Jing</au><au>Guo, Yunfan</au><au>Lindenberg, Aaron M.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-08-16</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>4953</spage><epage>4953</epage><pages>4953-4953</pages><artnum>4953</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials—the Janus transition metal dichalcogenides in the 1  T’ phase, synthesized by an advanced atomic-layer substitution method. High harmonic generation, terahertz emission spectroscopy, and second harmonic generation measurements consistently show orders-of-the-magnitude enhancement in terahertz-frequency nonlinearities in 1  T’ MoSSe (e.g., &gt; 50 times higher than 2 H MoS 2 for 18 th order harmonic generation; &gt; 20 times higher than 2 H MoS 2 for terahertz emission). We link this giant nonlinear optical response to topological band mixing and strong inversion symmetry breaking due to the Janus structure. Our work defines general protocols for designing materials with large nonlinearities and heralds the applications of topological materials in optoelectronics down to the monolayer limit. Electronic band topology may be leveraged to enhance nonlinear optical properties in monolayer semiconductors. Here, the authors report giant room-temperature nonlinearity enhancements in Janus transition metal dichalcogenides.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37587120</pmid><doi>10.1038/s41467-023-40373-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7652-3241</orcidid><orcidid>https://orcid.org/0000-0002-9604-984X</orcidid><orcidid>https://orcid.org/0000-0003-3233-7161</orcidid><orcidid>https://orcid.org/0000-0002-1467-8328</orcidid><orcidid>https://orcid.org/0000-0003-1803-3858</orcidid><orcidid>https://orcid.org/0000-0002-2039-9915</orcidid><orcidid>https://orcid.org/0000-0002-0260-951X</orcidid><orcidid>https://orcid.org/0000-0003-0551-1208</orcidid><orcidid>https://orcid.org/0000-0002-5360-5738</orcidid><orcidid>https://orcid.org/0000-0002-8998-3837</orcidid><orcidid>https://orcid.org/0000-0002-6576-906X</orcidid><orcidid>https://orcid.org/0000-0002-7841-8058</orcidid><orcidid>https://orcid.org/0000-0002-1703-6363</orcidid><orcidid>https://orcid.org/0000000278418058</orcidid><orcidid>https://orcid.org/000000029604984X</orcidid><orcidid>https://orcid.org/0000000220399915</orcidid><orcidid>https://orcid.org/0000000289983837</orcidid><orcidid>https://orcid.org/0000000214678328</orcidid><orcidid>https://orcid.org/0000000305511208</orcidid><orcidid>https://orcid.org/0000000318033858</orcidid><orcidid>https://orcid.org/0000000332337161</orcidid><orcidid>https://orcid.org/0000000253605738</orcidid><orcidid>https://orcid.org/000000026576906X</orcidid><orcidid>https://orcid.org/000000020260951X</orcidid><orcidid>https://orcid.org/0000000217036363</orcidid><orcidid>https://orcid.org/0000000276523241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-08, Vol.14 (1), p.4953-4953, Article 4953
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ff4e5339ce724876ac82317cb8284361
source Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/125
140/133
639/301/1019/385
639/624/400/3923
Broken symmetry
Chalcogenides
Emission measurements
Emission spectroscopy
Energy harvesting
ENGINEERING
High-harmonic generation
Humanities and Social Sciences
Molybdenum disulfide
Monolayers
multidisciplinary
Nonlinear optics
Nonlinear response
Nonlinear systems
Nonlinearity
Optical materials
Optical properties
Optics
Optoelectronics
Room temperature
Science
Science (multidisciplinary)
Second harmonic generation
Spectroscopy
Tensors
Terahertz frequencies
Topology
Transition metal compounds
title Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20room-temperature%20nonlinearities%20in%20a%20monolayer%20Janus%20topological%20semiconductor&rft.jtitle=Nature%20communications&rft.au=Shi,%20Jiaojian&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2023-08-16&rft.volume=14&rft.issue=1&rft.spage=4953&rft.epage=4953&rft.pages=4953-4953&rft.artnum=4953&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-40373-z&rft_dat=%3Cproquest_doaj_%3E2851515553%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2851515553&rft_id=info:pmid/37587120&rfr_iscdi=true