Loading…
Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor
Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted...
Saved in:
Published in: | Nature communications 2023-08, Vol.14 (1), p.4953-4953, Article 4953 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3 |
container_end_page | 4953 |
container_issue | 1 |
container_start_page | 4953 |
container_title | Nature communications |
container_volume | 14 |
creator | Shi, Jiaojian Xu, Haowei Heide, Christian HuangFu, Changan Xia, Chenyi de Quesada, Felipe Shen, Hongzhi Zhang, Tianyi Yu, Leo Johnson, Amalya Liu, Fang Shi, Enzheng Jiao, Liying Heinz, Tony Ghimire, Shambhu Li, Ju Kong, Jing Guo, Yunfan Lindenberg, Aaron M. |
description | Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials—the Janus transition metal dichalcogenides in the 1
T’
phase, synthesized by an advanced atomic-layer substitution method. High harmonic generation, terahertz emission spectroscopy, and second harmonic generation measurements consistently show orders-of-the-magnitude enhancement in terahertz-frequency nonlinearities in 1
T’
MoSSe (e.g., > 50 times higher than 2
H
MoS
2
for 18
th
order harmonic generation; > 20 times higher than 2
H
MoS
2
for terahertz emission). We link this giant nonlinear optical response to topological band mixing and strong inversion symmetry breaking due to the Janus structure. Our work defines general protocols for designing materials with large nonlinearities and heralds the applications of topological materials in optoelectronics down to the monolayer limit.
Electronic band topology may be leveraged to enhance nonlinear optical properties in monolayer semiconductors. Here, the authors report giant room-temperature nonlinearity enhancements in Janus transition metal dichalcogenides. |
doi_str_mv | 10.1038/s41467-023-40373-z |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ff4e5339ce724876ac82317cb8284361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ff4e5339ce724876ac82317cb8284361</doaj_id><sourcerecordid>2851515553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3</originalsourceid><addsrcrecordid>eNp9ks1u1TAQhSMEolXpC7CKYMMm4H87K4SqUooqsSlry3Emt64Sz8V2kNqnx7epgLLAXtiyz3wzOjpN85qS95Rw8yELKpTuCOOdIFzz7v5Zc8yIoB3VjD__637UnOZ8S-riPTVCvGyOuJZGU0aOm-uL4GJpE-LSFVj2kFxZE7QR4xwiuBRKgNyG2Lp2wYizu4PUfnVxzW3BPc64C97NbYYleIzj6gumV82Lyc0ZTh_Pk-b75_Prsy_d1beLy7NPV52XQpZuFGpSnCijp9GIQVHlKFNmmNhg6CgZ-EmPg1JK6MGP3BMple6d7g0fpl6P_KS53Lgjulu7T2Fx6c6iC_bhAdPOulSCn8FOkwDJee9BM2G0ct4wTrUfDDOCK1pZHzfWfh0WGD3Ektz8BPr0J4Ybu8OflhLBmZSyEt5sBMwl2OxDAX9TPYngi2XVfi1VFb17bJPwxwq52CVkD_PsIuCaLTOSVU9Ef5jo7T_SW1xTrIYeVLTu2rSq2KbyCXNOMP0emRJ7SIrdkmJrUuxDUux9LeJbUa7iuIP0B_2fql8Y-b-0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851515553</pqid></control><display><type>article</type><title>Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor</title><source>Publicly Available Content Database</source><source>Nature</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shi, Jiaojian ; Xu, Haowei ; Heide, Christian ; HuangFu, Changan ; Xia, Chenyi ; de Quesada, Felipe ; Shen, Hongzhi ; Zhang, Tianyi ; Yu, Leo ; Johnson, Amalya ; Liu, Fang ; Shi, Enzheng ; Jiao, Liying ; Heinz, Tony ; Ghimire, Shambhu ; Li, Ju ; Kong, Jing ; Guo, Yunfan ; Lindenberg, Aaron M.</creator><creatorcontrib>Shi, Jiaojian ; Xu, Haowei ; Heide, Christian ; HuangFu, Changan ; Xia, Chenyi ; de Quesada, Felipe ; Shen, Hongzhi ; Zhang, Tianyi ; Yu, Leo ; Johnson, Amalya ; Liu, Fang ; Shi, Enzheng ; Jiao, Liying ; Heinz, Tony ; Ghimire, Shambhu ; Li, Ju ; Kong, Jing ; Guo, Yunfan ; Lindenberg, Aaron M. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials—the Janus transition metal dichalcogenides in the 1
T’
phase, synthesized by an advanced atomic-layer substitution method. High harmonic generation, terahertz emission spectroscopy, and second harmonic generation measurements consistently show orders-of-the-magnitude enhancement in terahertz-frequency nonlinearities in 1
T’
MoSSe (e.g., > 50 times higher than 2
H
MoS
2
for 18
th
order harmonic generation; > 20 times higher than 2
H
MoS
2
for terahertz emission). We link this giant nonlinear optical response to topological band mixing and strong inversion symmetry breaking due to the Janus structure. Our work defines general protocols for designing materials with large nonlinearities and heralds the applications of topological materials in optoelectronics down to the monolayer limit.
Electronic band topology may be leveraged to enhance nonlinear optical properties in monolayer semiconductors. Here, the authors report giant room-temperature nonlinearity enhancements in Janus transition metal dichalcogenides.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-40373-z</identifier><identifier>PMID: 37587120</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 140/133 ; 639/301/1019/385 ; 639/624/400/3923 ; Broken symmetry ; Chalcogenides ; Emission measurements ; Emission spectroscopy ; Energy harvesting ; ENGINEERING ; High-harmonic generation ; Humanities and Social Sciences ; Molybdenum disulfide ; Monolayers ; multidisciplinary ; Nonlinear optics ; Nonlinear response ; Nonlinear systems ; Nonlinearity ; Optical materials ; Optical properties ; Optics ; Optoelectronics ; Room temperature ; Science ; Science (multidisciplinary) ; Second harmonic generation ; Spectroscopy ; Tensors ; Terahertz frequencies ; Topology ; Transition metal compounds</subject><ispartof>Nature communications, 2023-08, Vol.14 (1), p.4953-4953, Article 4953</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3</citedby><cites>FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3</cites><orcidid>0000-0002-7652-3241 ; 0000-0002-9604-984X ; 0000-0003-3233-7161 ; 0000-0002-1467-8328 ; 0000-0003-1803-3858 ; 0000-0002-2039-9915 ; 0000-0002-0260-951X ; 0000-0003-0551-1208 ; 0000-0002-5360-5738 ; 0000-0002-8998-3837 ; 0000-0002-6576-906X ; 0000-0002-7841-8058 ; 0000-0002-1703-6363 ; 0000000278418058 ; 000000029604984X ; 0000000220399915 ; 0000000289983837 ; 0000000214678328 ; 0000000305511208 ; 0000000318033858 ; 0000000332337161 ; 0000000253605738 ; 000000026576906X ; 000000020260951X ; 0000000217036363 ; 0000000276523241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2851515553/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2851515553?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2000756$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Jiaojian</creatorcontrib><creatorcontrib>Xu, Haowei</creatorcontrib><creatorcontrib>Heide, Christian</creatorcontrib><creatorcontrib>HuangFu, Changan</creatorcontrib><creatorcontrib>Xia, Chenyi</creatorcontrib><creatorcontrib>de Quesada, Felipe</creatorcontrib><creatorcontrib>Shen, Hongzhi</creatorcontrib><creatorcontrib>Zhang, Tianyi</creatorcontrib><creatorcontrib>Yu, Leo</creatorcontrib><creatorcontrib>Johnson, Amalya</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Shi, Enzheng</creatorcontrib><creatorcontrib>Jiao, Liying</creatorcontrib><creatorcontrib>Heinz, Tony</creatorcontrib><creatorcontrib>Ghimire, Shambhu</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Guo, Yunfan</creatorcontrib><creatorcontrib>Lindenberg, Aaron M.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials—the Janus transition metal dichalcogenides in the 1
T’
phase, synthesized by an advanced atomic-layer substitution method. High harmonic generation, terahertz emission spectroscopy, and second harmonic generation measurements consistently show orders-of-the-magnitude enhancement in terahertz-frequency nonlinearities in 1
T’
MoSSe (e.g., > 50 times higher than 2
H
MoS
2
for 18
th
order harmonic generation; > 20 times higher than 2
H
MoS
2
for terahertz emission). We link this giant nonlinear optical response to topological band mixing and strong inversion symmetry breaking due to the Janus structure. Our work defines general protocols for designing materials with large nonlinearities and heralds the applications of topological materials in optoelectronics down to the monolayer limit.
Electronic band topology may be leveraged to enhance nonlinear optical properties in monolayer semiconductors. Here, the authors report giant room-temperature nonlinearity enhancements in Janus transition metal dichalcogenides.</description><subject>140/125</subject><subject>140/133</subject><subject>639/301/1019/385</subject><subject>639/624/400/3923</subject><subject>Broken symmetry</subject><subject>Chalcogenides</subject><subject>Emission measurements</subject><subject>Emission spectroscopy</subject><subject>Energy harvesting</subject><subject>ENGINEERING</subject><subject>High-harmonic generation</subject><subject>Humanities and Social Sciences</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>multidisciplinary</subject><subject>Nonlinear optics</subject><subject>Nonlinear response</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>Optical materials</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Optoelectronics</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Second harmonic generation</subject><subject>Spectroscopy</subject><subject>Tensors</subject><subject>Terahertz frequencies</subject><subject>Topology</subject><subject>Transition metal compounds</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1TAQhSMEolXpC7CKYMMm4H87K4SqUooqsSlry3Emt64Sz8V2kNqnx7epgLLAXtiyz3wzOjpN85qS95Rw8yELKpTuCOOdIFzz7v5Zc8yIoB3VjD__637UnOZ8S-riPTVCvGyOuJZGU0aOm-uL4GJpE-LSFVj2kFxZE7QR4xwiuBRKgNyG2Lp2wYizu4PUfnVxzW3BPc64C97NbYYleIzj6gumV82Lyc0ZTh_Pk-b75_Prsy_d1beLy7NPV52XQpZuFGpSnCijp9GIQVHlKFNmmNhg6CgZ-EmPg1JK6MGP3BMple6d7g0fpl6P_KS53Lgjulu7T2Fx6c6iC_bhAdPOulSCn8FOkwDJee9BM2G0ct4wTrUfDDOCK1pZHzfWfh0WGD3Ektz8BPr0J4Ybu8OflhLBmZSyEt5sBMwl2OxDAX9TPYngi2XVfi1VFb17bJPwxwq52CVkD_PsIuCaLTOSVU9Ef5jo7T_SW1xTrIYeVLTu2rSq2KbyCXNOMP0emRJ7SIrdkmJrUuxDUux9LeJbUa7iuIP0B_2fql8Y-b-0</recordid><startdate>20230816</startdate><enddate>20230816</enddate><creator>Shi, Jiaojian</creator><creator>Xu, Haowei</creator><creator>Heide, Christian</creator><creator>HuangFu, Changan</creator><creator>Xia, Chenyi</creator><creator>de Quesada, Felipe</creator><creator>Shen, Hongzhi</creator><creator>Zhang, Tianyi</creator><creator>Yu, Leo</creator><creator>Johnson, Amalya</creator><creator>Liu, Fang</creator><creator>Shi, Enzheng</creator><creator>Jiao, Liying</creator><creator>Heinz, Tony</creator><creator>Ghimire, Shambhu</creator><creator>Li, Ju</creator><creator>Kong, Jing</creator><creator>Guo, Yunfan</creator><creator>Lindenberg, Aaron M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7652-3241</orcidid><orcidid>https://orcid.org/0000-0002-9604-984X</orcidid><orcidid>https://orcid.org/0000-0003-3233-7161</orcidid><orcidid>https://orcid.org/0000-0002-1467-8328</orcidid><orcidid>https://orcid.org/0000-0003-1803-3858</orcidid><orcidid>https://orcid.org/0000-0002-2039-9915</orcidid><orcidid>https://orcid.org/0000-0002-0260-951X</orcidid><orcidid>https://orcid.org/0000-0003-0551-1208</orcidid><orcidid>https://orcid.org/0000-0002-5360-5738</orcidid><orcidid>https://orcid.org/0000-0002-8998-3837</orcidid><orcidid>https://orcid.org/0000-0002-6576-906X</orcidid><orcidid>https://orcid.org/0000-0002-7841-8058</orcidid><orcidid>https://orcid.org/0000-0002-1703-6363</orcidid><orcidid>https://orcid.org/0000000278418058</orcidid><orcidid>https://orcid.org/000000029604984X</orcidid><orcidid>https://orcid.org/0000000220399915</orcidid><orcidid>https://orcid.org/0000000289983837</orcidid><orcidid>https://orcid.org/0000000214678328</orcidid><orcidid>https://orcid.org/0000000305511208</orcidid><orcidid>https://orcid.org/0000000318033858</orcidid><orcidid>https://orcid.org/0000000332337161</orcidid><orcidid>https://orcid.org/0000000253605738</orcidid><orcidid>https://orcid.org/000000026576906X</orcidid><orcidid>https://orcid.org/000000020260951X</orcidid><orcidid>https://orcid.org/0000000217036363</orcidid><orcidid>https://orcid.org/0000000276523241</orcidid></search><sort><creationdate>20230816</creationdate><title>Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor</title><author>Shi, Jiaojian ; Xu, Haowei ; Heide, Christian ; HuangFu, Changan ; Xia, Chenyi ; de Quesada, Felipe ; Shen, Hongzhi ; Zhang, Tianyi ; Yu, Leo ; Johnson, Amalya ; Liu, Fang ; Shi, Enzheng ; Jiao, Liying ; Heinz, Tony ; Ghimire, Shambhu ; Li, Ju ; Kong, Jing ; Guo, Yunfan ; Lindenberg, Aaron M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>140/125</topic><topic>140/133</topic><topic>639/301/1019/385</topic><topic>639/624/400/3923</topic><topic>Broken symmetry</topic><topic>Chalcogenides</topic><topic>Emission measurements</topic><topic>Emission spectroscopy</topic><topic>Energy harvesting</topic><topic>ENGINEERING</topic><topic>High-harmonic generation</topic><topic>Humanities and Social Sciences</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>multidisciplinary</topic><topic>Nonlinear optics</topic><topic>Nonlinear response</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>Optical materials</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Optoelectronics</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Second harmonic generation</topic><topic>Spectroscopy</topic><topic>Tensors</topic><topic>Terahertz frequencies</topic><topic>Topology</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jiaojian</creatorcontrib><creatorcontrib>Xu, Haowei</creatorcontrib><creatorcontrib>Heide, Christian</creatorcontrib><creatorcontrib>HuangFu, Changan</creatorcontrib><creatorcontrib>Xia, Chenyi</creatorcontrib><creatorcontrib>de Quesada, Felipe</creatorcontrib><creatorcontrib>Shen, Hongzhi</creatorcontrib><creatorcontrib>Zhang, Tianyi</creatorcontrib><creatorcontrib>Yu, Leo</creatorcontrib><creatorcontrib>Johnson, Amalya</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Shi, Enzheng</creatorcontrib><creatorcontrib>Jiao, Liying</creatorcontrib><creatorcontrib>Heinz, Tony</creatorcontrib><creatorcontrib>Ghimire, Shambhu</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Guo, Yunfan</creatorcontrib><creatorcontrib>Lindenberg, Aaron M.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jiaojian</au><au>Xu, Haowei</au><au>Heide, Christian</au><au>HuangFu, Changan</au><au>Xia, Chenyi</au><au>de Quesada, Felipe</au><au>Shen, Hongzhi</au><au>Zhang, Tianyi</au><au>Yu, Leo</au><au>Johnson, Amalya</au><au>Liu, Fang</au><au>Shi, Enzheng</au><au>Jiao, Liying</au><au>Heinz, Tony</au><au>Ghimire, Shambhu</au><au>Li, Ju</au><au>Kong, Jing</au><au>Guo, Yunfan</au><au>Lindenberg, Aaron M.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-08-16</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>4953</spage><epage>4953</epage><pages>4953-4953</pages><artnum>4953</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Nonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials—the Janus transition metal dichalcogenides in the 1
T’
phase, synthesized by an advanced atomic-layer substitution method. High harmonic generation, terahertz emission spectroscopy, and second harmonic generation measurements consistently show orders-of-the-magnitude enhancement in terahertz-frequency nonlinearities in 1
T’
MoSSe (e.g., > 50 times higher than 2
H
MoS
2
for 18
th
order harmonic generation; > 20 times higher than 2
H
MoS
2
for terahertz emission). We link this giant nonlinear optical response to topological band mixing and strong inversion symmetry breaking due to the Janus structure. Our work defines general protocols for designing materials with large nonlinearities and heralds the applications of topological materials in optoelectronics down to the monolayer limit.
Electronic band topology may be leveraged to enhance nonlinear optical properties in monolayer semiconductors. Here, the authors report giant room-temperature nonlinearity enhancements in Janus transition metal dichalcogenides.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37587120</pmid><doi>10.1038/s41467-023-40373-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7652-3241</orcidid><orcidid>https://orcid.org/0000-0002-9604-984X</orcidid><orcidid>https://orcid.org/0000-0003-3233-7161</orcidid><orcidid>https://orcid.org/0000-0002-1467-8328</orcidid><orcidid>https://orcid.org/0000-0003-1803-3858</orcidid><orcidid>https://orcid.org/0000-0002-2039-9915</orcidid><orcidid>https://orcid.org/0000-0002-0260-951X</orcidid><orcidid>https://orcid.org/0000-0003-0551-1208</orcidid><orcidid>https://orcid.org/0000-0002-5360-5738</orcidid><orcidid>https://orcid.org/0000-0002-8998-3837</orcidid><orcidid>https://orcid.org/0000-0002-6576-906X</orcidid><orcidid>https://orcid.org/0000-0002-7841-8058</orcidid><orcidid>https://orcid.org/0000-0002-1703-6363</orcidid><orcidid>https://orcid.org/0000000278418058</orcidid><orcidid>https://orcid.org/000000029604984X</orcidid><orcidid>https://orcid.org/0000000220399915</orcidid><orcidid>https://orcid.org/0000000289983837</orcidid><orcidid>https://orcid.org/0000000214678328</orcidid><orcidid>https://orcid.org/0000000305511208</orcidid><orcidid>https://orcid.org/0000000318033858</orcidid><orcidid>https://orcid.org/0000000332337161</orcidid><orcidid>https://orcid.org/0000000253605738</orcidid><orcidid>https://orcid.org/000000026576906X</orcidid><orcidid>https://orcid.org/000000020260951X</orcidid><orcidid>https://orcid.org/0000000217036363</orcidid><orcidid>https://orcid.org/0000000276523241</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-08, Vol.14 (1), p.4953-4953, Article 4953 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ff4e5339ce724876ac82317cb8284361 |
source | Publicly Available Content Database; Nature; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/125 140/133 639/301/1019/385 639/624/400/3923 Broken symmetry Chalcogenides Emission measurements Emission spectroscopy Energy harvesting ENGINEERING High-harmonic generation Humanities and Social Sciences Molybdenum disulfide Monolayers multidisciplinary Nonlinear optics Nonlinear response Nonlinear systems Nonlinearity Optical materials Optical properties Optics Optoelectronics Room temperature Science Science (multidisciplinary) Second harmonic generation Spectroscopy Tensors Terahertz frequencies Topology Transition metal compounds |
title | Giant room-temperature nonlinearities in a monolayer Janus topological semiconductor |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T13%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20room-temperature%20nonlinearities%20in%20a%20monolayer%20Janus%20topological%20semiconductor&rft.jtitle=Nature%20communications&rft.au=Shi,%20Jiaojian&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2023-08-16&rft.volume=14&rft.issue=1&rft.spage=4953&rft.epage=4953&rft.pages=4953-4953&rft.artnum=4953&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-40373-z&rft_dat=%3Cproquest_doaj_%3E2851515553%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-d46f630687fd84b616a1268bf2b81d52ecf7db66647bcd3c055679a7983bf97d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2851515553&rft_id=info:pmid/37587120&rfr_iscdi=true |