Loading…

A Novel Multimode Fault Classification Method Based on Deep Learning

Due to the problem of load varying or environment changing, machinery equipment often operates in multimode. The data feature involved in the observation often varies with mode changing. Mode partition is a fundamental step before fault classification. This paper proposes a multimode classification...

Full description

Saved in:
Bibliographic Details
Published in:Journal of control science and engineering 2017-01, Vol.2017 (2017), p.1-14
Main Authors: Zhou, Funa, Wen, Chenglin, Gao, Yulin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the problem of load varying or environment changing, machinery equipment often operates in multimode. The data feature involved in the observation often varies with mode changing. Mode partition is a fundamental step before fault classification. This paper proposes a multimode classification method based on deep learning by constructing a hierarchical DNN model with the first hierarchy specially devised for the purpose of mode partition. In the second hierarchy , different DNN classification models are constructed for each mode to get more accurate fault classification result. For the purpose of providing helpful information for predictive maintenance, an additional DNN is constructed in the third hierarchy to further classify a certain fault in a given mode into several classes with different fault severity. The application to multimode fault classification of rolling bearing fault shows the effectiveness of the proposed method.
ISSN:1687-5249
1687-5257
DOI:10.1155/2017/3583610