Loading…
The Essential Role of Local Context in Shaping Risk and Risk Reduction Strategies for Snowmelt‐Dependent Irrigated Agriculture
Climate change‐induced shifts in snow storage and snowmelt patterns pose risks for adverse impacts to people, the environment, and irrigated agriculture. Existing research primarily focuses on evaluating these risks to irrigated agriculture at large scales, overlooking the role of local context in s...
Saved in:
Published in: | Earth's future 2024-06, Vol.12 (6), p.n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Climate change‐induced shifts in snow storage and snowmelt patterns pose risks for adverse impacts to people, the environment, and irrigated agriculture. Existing research primarily focuses on evaluating these risks to irrigated agriculture at large scales, overlooking the role of local context in shaping risk dynamics. Consequently, many “at‐risk” areas lack insight into how adaptation strategies for managing risk through water supply augmentation or water conservation vary across contexts and over time. To address this gap, we develop a comprehensive index for evaluating irrigated agriculture's risk and adaptation potential to changes in snow at local scales and apply it throughout the western US. Results confirm trends toward escalating risk for changes in snow storage and snowmelt patterns over the century. However, substantial heterogeneity in the extent and drivers of risk exists due to variability in localized interactions between declines in water supply (approximately −9% ± 13% by 2100) and increased agricultural demand (approximately 7% ± 5% by 2100). Despite an existing focus on supply augmentation as a critical adaptation strategy to reduce risk, we show its effectiveness diminishes for many areas over time, declining to an average of −54% of historical augmentation potential by 2100. Conserving water through historical changes in crop acreage and type emerges as a more stable adaptation measure, reducing demand by 7%–8% regardless of time. While particularly relevant for higher elevation, less intensive agricultural settings in snowmelt‐dependent regions, findings underscore the need for strategies that support local‐scale, context‐appropriate adaptation to effectively manage escalating risk as snow changes.
Plain Language Summary
Climate change‐induced shifts in snow storage and snowmelt patterns threaten water supplies for irrigated agriculture, necessitating adaptation. In agriculture, adaptation requires balancing water supply and demand locally, which is often overlooked in larger‐scale analyses. We develop a framework for evaluating risk and adaptation at local scales in the agricultural sector and apply it to the western US, which is broadly at risk for adverse effects (i.e., physical harm, economic losses, and socio‐cultural damage) if water demand cannot be met. Changing snow dynamics negatively impact many local areas over time, although impacts can often be reduced through supply augmentation and water conservation. While the degree |
---|---|
ISSN: | 2328-4277 2328-4277 |
DOI: | 10.1029/2024EF004577 |