Loading…
A network of transcription factors in complex with a regulating cell cycle cyclin orchestrates fungal oxidative stress responses
Response to oxidative stress is universal in almost all organisms and the mitochondrial membrane protein, BbOhmm, negatively affects oxidative stress responses and virulence in the insect fungal pathogen, Beauveria bassiana. Nothing further, however, is known concerning how BbOhmm and this phenomeno...
Saved in:
Published in: | BMC biology 2024-04, Vol.22 (1), p.81-81, Article 81 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c527t-2f5925707d52f51b3cb8847521641df20c222429ac832397e51735516a64ddfc3 |
container_end_page | 81 |
container_issue | 1 |
container_start_page | 81 |
container_title | BMC biology |
container_volume | 22 |
creator | Kan, Yanze He, Zhangjiang Keyhani, Nemat O Li, Ning Huang, Shuaishuai Zhao, Xin Liu, Pengfei Zeng, Fanqin Li, Min Luo, Zhibing Zhang, Yongjun |
description | Response to oxidative stress is universal in almost all organisms and the mitochondrial membrane protein, BbOhmm, negatively affects oxidative stress responses and virulence in the insect fungal pathogen, Beauveria bassiana. Nothing further, however, is known concerning how BbOhmm and this phenomenon is regulated.
Three oxidative stress response regulating Zn
Cys
transcription factors (BbOsrR1, 2, and 3) were identified and verified via chromatin immunoprecipitation (ChIP)-qPCR analysis as binding to the BbOhmm promoter region, with BbOsrR2 showing the strongest binding. Targeted gene knockout of BbOsrR1 or BbOsrR3 led to decreased BbOhmm expression and consequently increased tolerances to free radical generating compounds (H
O
and menadione), whereas the ΔBbOsrR2 strain showed increased BbOhmm expression with concomitant decreased tolerances to these compounds. RNA and ChIP sequencing analysis revealed that BbOsrR1 directly regulated a wide range of antioxidation and transcription-associated genes, negatively affecting the expression of the BbClp1 cyclin and BbOsrR2. BbClp1 was shown to localize to the cell nucleus and negatively mediate oxidative stress responses. BbOsrR2 and BbOsrR3 were shown to feed into the Fus3-MAPK pathway in addition to regulating antioxidation and detoxification genes. Binding motifs for the three transcription factors were found to partially overlap in the promoter region of BbOhmm and other target genes. Whereas BbOsrR1 appeared to function independently, co-immunoprecipitation revealed complex formation between BbClp1, BbOsrR2, and BbOsrR3, with BbClp1 partially regulating BbOsrR2 phosphorylation.
These findings reveal a regulatory network mediated by BbOsrR1 and the formation of a BbClp1-BbOsrR2-BbOsrR3 complex that orchestrates fungal oxidative stress responses. |
doi_str_mv | 10.1186/s12915-024-01884-3 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ff5e139c5f77446ea36f41811c61dc96</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A789899011</galeid><doaj_id>oai_doaj_org_article_ff5e139c5f77446ea36f41811c61dc96</doaj_id><sourcerecordid>A789899011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-2f5925707d52f51b3cb8847521641df20c222429ac832397e51735516a64ddfc3</originalsourceid><addsrcrecordid>eNqNkktvEzEUhUcIREvhD7BAltjAYoof47G9rCoekSpV4rW1HI-dOkzsYHvadMdP5yYphSAWyJJ9ZX_3yPfoNM1zgk8Jkf2bQqgivMW0azGRsmvZg-aYiI60AmPx8I_6qHlSyhJjyoVgj5sjJnuslJDHzY8zFF29SfkbSh7VbGKxOaxrSBF5Y2vKBYWIbFqtR7dBN6FeIYOyW0yjqSEukHXjiOytHd1uBzZle-UKSFVXkJ_iwowobcIA_LVD8OBKAYWyTrG48rR55M1Y3LO786T58u7t5_MP7cXl-9n52UVrORW1pZ4r-D0WA4eSzJmdw8SCU9J3ZPAUW0ppR5WxklGmhONEMM5Jb_puGLxlJ81srzsks9TrHFYm3-pkgt5dpLzQJtcAc2jvuSNMWe6F6LreGdb7jkhCbE8Gq3rQerXXWuf0fYJZ9SqUrREmujQVzTCTHXjMJKAv_0KXacoRJt1SQnImCf1NgVdOh-gT2Ge3ovpMSCWVwoQAdfoPCtbgVsGm6HyA-4OG1wcNwFS3qQszlaJnnz7-P3v59ZCle9bmVEp2_t5PgvU2mnofTQ3R1LtoagZNL-6cmOYrN9y3_Moi-wk0xdvZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037853812</pqid></control><display><type>article</type><title>A network of transcription factors in complex with a regulating cell cycle cyclin orchestrates fungal oxidative stress responses</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Kan, Yanze ; He, Zhangjiang ; Keyhani, Nemat O ; Li, Ning ; Huang, Shuaishuai ; Zhao, Xin ; Liu, Pengfei ; Zeng, Fanqin ; Li, Min ; Luo, Zhibing ; Zhang, Yongjun</creator><creatorcontrib>Kan, Yanze ; He, Zhangjiang ; Keyhani, Nemat O ; Li, Ning ; Huang, Shuaishuai ; Zhao, Xin ; Liu, Pengfei ; Zeng, Fanqin ; Li, Min ; Luo, Zhibing ; Zhang, Yongjun</creatorcontrib><description>Response to oxidative stress is universal in almost all organisms and the mitochondrial membrane protein, BbOhmm, negatively affects oxidative stress responses and virulence in the insect fungal pathogen, Beauveria bassiana. Nothing further, however, is known concerning how BbOhmm and this phenomenon is regulated.
Three oxidative stress response regulating Zn
Cys
transcription factors (BbOsrR1, 2, and 3) were identified and verified via chromatin immunoprecipitation (ChIP)-qPCR analysis as binding to the BbOhmm promoter region, with BbOsrR2 showing the strongest binding. Targeted gene knockout of BbOsrR1 or BbOsrR3 led to decreased BbOhmm expression and consequently increased tolerances to free radical generating compounds (H
O
and menadione), whereas the ΔBbOsrR2 strain showed increased BbOhmm expression with concomitant decreased tolerances to these compounds. RNA and ChIP sequencing analysis revealed that BbOsrR1 directly regulated a wide range of antioxidation and transcription-associated genes, negatively affecting the expression of the BbClp1 cyclin and BbOsrR2. BbClp1 was shown to localize to the cell nucleus and negatively mediate oxidative stress responses. BbOsrR2 and BbOsrR3 were shown to feed into the Fus3-MAPK pathway in addition to regulating antioxidation and detoxification genes. Binding motifs for the three transcription factors were found to partially overlap in the promoter region of BbOhmm and other target genes. Whereas BbOsrR1 appeared to function independently, co-immunoprecipitation revealed complex formation between BbClp1, BbOsrR2, and BbOsrR3, with BbClp1 partially regulating BbOsrR2 phosphorylation.
These findings reveal a regulatory network mediated by BbOsrR1 and the formation of a BbClp1-BbOsrR2-BbOsrR3 complex that orchestrates fungal oxidative stress responses.</description><identifier>ISSN: 1741-7007</identifier><identifier>EISSN: 1741-7007</identifier><identifier>DOI: 10.1186/s12915-024-01884-3</identifier><identifier>PMID: 38609978</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Antioxidants ; Binding ; Cell Cycle ; Cell death ; Cellular stress response ; Chromatin ; Chromatin immunoprecipitation ; Cloning ; Complex formation ; Cyclins ; Detoxification ; DNA binding proteins ; Free radicals ; Fungal pathogen ; Fungi ; Gene expression ; Gene regulation ; Gene sequencing ; Genes ; Genomes ; Genotype & phenotype ; Health aspects ; Homeostasis ; Hydrogen Peroxide ; Hypoxia ; Immunoprecipitation ; Infections ; Insects ; Kinases ; MAP kinase ; Membrane proteins ; Menadione ; Metabolites ; Oxidative Stress ; Oxidative stress response ; Pathogens ; Phosphorylation ; Promoters ; Protein complex ; Proteins ; Regulation ; RNA ; Sequence analysis ; Tolerances ; Tolerances (dimensional) ; Transcription ; Transcription factor ; Transcription factors ; Transcription Factors - genetics ; Virulence ; Virulence (Microbiology) ; Yeast</subject><ispartof>BMC biology, 2024-04, Vol.22 (1), p.81-81, Article 81</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c527t-2f5925707d52f51b3cb8847521641df20c222429ac832397e51735516a64ddfc3</cites><orcidid>0000-0001-8101-4313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3037853812/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3037853812?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38609978$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kan, Yanze</creatorcontrib><creatorcontrib>He, Zhangjiang</creatorcontrib><creatorcontrib>Keyhani, Nemat O</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Huang, Shuaishuai</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Zeng, Fanqin</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Luo, Zhibing</creatorcontrib><creatorcontrib>Zhang, Yongjun</creatorcontrib><title>A network of transcription factors in complex with a regulating cell cycle cyclin orchestrates fungal oxidative stress responses</title><title>BMC biology</title><addtitle>BMC Biol</addtitle><description>Response to oxidative stress is universal in almost all organisms and the mitochondrial membrane protein, BbOhmm, negatively affects oxidative stress responses and virulence in the insect fungal pathogen, Beauveria bassiana. Nothing further, however, is known concerning how BbOhmm and this phenomenon is regulated.
Three oxidative stress response regulating Zn
Cys
transcription factors (BbOsrR1, 2, and 3) were identified and verified via chromatin immunoprecipitation (ChIP)-qPCR analysis as binding to the BbOhmm promoter region, with BbOsrR2 showing the strongest binding. Targeted gene knockout of BbOsrR1 or BbOsrR3 led to decreased BbOhmm expression and consequently increased tolerances to free radical generating compounds (H
O
and menadione), whereas the ΔBbOsrR2 strain showed increased BbOhmm expression with concomitant decreased tolerances to these compounds. RNA and ChIP sequencing analysis revealed that BbOsrR1 directly regulated a wide range of antioxidation and transcription-associated genes, negatively affecting the expression of the BbClp1 cyclin and BbOsrR2. BbClp1 was shown to localize to the cell nucleus and negatively mediate oxidative stress responses. BbOsrR2 and BbOsrR3 were shown to feed into the Fus3-MAPK pathway in addition to regulating antioxidation and detoxification genes. Binding motifs for the three transcription factors were found to partially overlap in the promoter region of BbOhmm and other target genes. Whereas BbOsrR1 appeared to function independently, co-immunoprecipitation revealed complex formation between BbClp1, BbOsrR2, and BbOsrR3, with BbClp1 partially regulating BbOsrR2 phosphorylation.
These findings reveal a regulatory network mediated by BbOsrR1 and the formation of a BbClp1-BbOsrR2-BbOsrR3 complex that orchestrates fungal oxidative stress responses.</description><subject>Analysis</subject><subject>Antioxidants</subject><subject>Binding</subject><subject>Cell Cycle</subject><subject>Cell death</subject><subject>Cellular stress response</subject><subject>Chromatin</subject><subject>Chromatin immunoprecipitation</subject><subject>Cloning</subject><subject>Complex formation</subject><subject>Cyclins</subject><subject>Detoxification</subject><subject>DNA binding proteins</subject><subject>Free radicals</subject><subject>Fungal pathogen</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genotype & phenotype</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Hydrogen Peroxide</subject><subject>Hypoxia</subject><subject>Immunoprecipitation</subject><subject>Infections</subject><subject>Insects</subject><subject>Kinases</subject><subject>MAP kinase</subject><subject>Membrane proteins</subject><subject>Menadione</subject><subject>Metabolites</subject><subject>Oxidative Stress</subject><subject>Oxidative stress response</subject><subject>Pathogens</subject><subject>Phosphorylation</subject><subject>Promoters</subject><subject>Protein complex</subject><subject>Proteins</subject><subject>Regulation</subject><subject>RNA</subject><subject>Sequence analysis</subject><subject>Tolerances</subject><subject>Tolerances (dimensional)</subject><subject>Transcription</subject><subject>Transcription factor</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><subject>Yeast</subject><issn>1741-7007</issn><issn>1741-7007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktvEzEUhUcIREvhD7BAltjAYoof47G9rCoekSpV4rW1HI-dOkzsYHvadMdP5yYphSAWyJJ9ZX_3yPfoNM1zgk8Jkf2bQqgivMW0azGRsmvZg-aYiI60AmPx8I_6qHlSyhJjyoVgj5sjJnuslJDHzY8zFF29SfkbSh7VbGKxOaxrSBF5Y2vKBYWIbFqtR7dBN6FeIYOyW0yjqSEukHXjiOytHd1uBzZle-UKSFVXkJ_iwowobcIA_LVD8OBKAYWyTrG48rR55M1Y3LO786T58u7t5_MP7cXl-9n52UVrORW1pZ4r-D0WA4eSzJmdw8SCU9J3ZPAUW0ppR5WxklGmhONEMM5Jb_puGLxlJ81srzsks9TrHFYm3-pkgt5dpLzQJtcAc2jvuSNMWe6F6LreGdb7jkhCbE8Gq3rQerXXWuf0fYJZ9SqUrREmujQVzTCTHXjMJKAv_0KXacoRJt1SQnImCf1NgVdOh-gT2Ge3ovpMSCWVwoQAdfoPCtbgVsGm6HyA-4OG1wcNwFS3qQszlaJnnz7-P3v59ZCle9bmVEp2_t5PgvU2mnofTQ3R1LtoagZNL-6cmOYrN9y3_Moi-wk0xdvZ</recordid><startdate>20240412</startdate><enddate>20240412</enddate><creator>Kan, Yanze</creator><creator>He, Zhangjiang</creator><creator>Keyhani, Nemat O</creator><creator>Li, Ning</creator><creator>Huang, Shuaishuai</creator><creator>Zhao, Xin</creator><creator>Liu, Pengfei</creator><creator>Zeng, Fanqin</creator><creator>Li, Min</creator><creator>Luo, Zhibing</creator><creator>Zhang, Yongjun</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>4U-</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8101-4313</orcidid></search><sort><creationdate>20240412</creationdate><title>A network of transcription factors in complex with a regulating cell cycle cyclin orchestrates fungal oxidative stress responses</title><author>Kan, Yanze ; He, Zhangjiang ; Keyhani, Nemat O ; Li, Ning ; Huang, Shuaishuai ; Zhao, Xin ; Liu, Pengfei ; Zeng, Fanqin ; Li, Min ; Luo, Zhibing ; Zhang, Yongjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-2f5925707d52f51b3cb8847521641df20c222429ac832397e51735516a64ddfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Antioxidants</topic><topic>Binding</topic><topic>Cell Cycle</topic><topic>Cell death</topic><topic>Cellular stress response</topic><topic>Chromatin</topic><topic>Chromatin immunoprecipitation</topic><topic>Cloning</topic><topic>Complex formation</topic><topic>Cyclins</topic><topic>Detoxification</topic><topic>DNA binding proteins</topic><topic>Free radicals</topic><topic>Fungal pathogen</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genotype & phenotype</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Hydrogen Peroxide</topic><topic>Hypoxia</topic><topic>Immunoprecipitation</topic><topic>Infections</topic><topic>Insects</topic><topic>Kinases</topic><topic>MAP kinase</topic><topic>Membrane proteins</topic><topic>Menadione</topic><topic>Metabolites</topic><topic>Oxidative Stress</topic><topic>Oxidative stress response</topic><topic>Pathogens</topic><topic>Phosphorylation</topic><topic>Promoters</topic><topic>Protein complex</topic><topic>Proteins</topic><topic>Regulation</topic><topic>RNA</topic><topic>Sequence analysis</topic><topic>Tolerances</topic><topic>Tolerances (dimensional)</topic><topic>Transcription</topic><topic>Transcription factor</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kan, Yanze</creatorcontrib><creatorcontrib>He, Zhangjiang</creatorcontrib><creatorcontrib>Keyhani, Nemat O</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Huang, Shuaishuai</creatorcontrib><creatorcontrib>Zhao, Xin</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Zeng, Fanqin</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Luo, Zhibing</creatorcontrib><creatorcontrib>Zhang, Yongjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>University Readers</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kan, Yanze</au><au>He, Zhangjiang</au><au>Keyhani, Nemat O</au><au>Li, Ning</au><au>Huang, Shuaishuai</au><au>Zhao, Xin</au><au>Liu, Pengfei</au><au>Zeng, Fanqin</au><au>Li, Min</au><au>Luo, Zhibing</au><au>Zhang, Yongjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A network of transcription factors in complex with a regulating cell cycle cyclin orchestrates fungal oxidative stress responses</atitle><jtitle>BMC biology</jtitle><addtitle>BMC Biol</addtitle><date>2024-04-12</date><risdate>2024</risdate><volume>22</volume><issue>1</issue><spage>81</spage><epage>81</epage><pages>81-81</pages><artnum>81</artnum><issn>1741-7007</issn><eissn>1741-7007</eissn><abstract>Response to oxidative stress is universal in almost all organisms and the mitochondrial membrane protein, BbOhmm, negatively affects oxidative stress responses and virulence in the insect fungal pathogen, Beauveria bassiana. Nothing further, however, is known concerning how BbOhmm and this phenomenon is regulated.
Three oxidative stress response regulating Zn
Cys
transcription factors (BbOsrR1, 2, and 3) were identified and verified via chromatin immunoprecipitation (ChIP)-qPCR analysis as binding to the BbOhmm promoter region, with BbOsrR2 showing the strongest binding. Targeted gene knockout of BbOsrR1 or BbOsrR3 led to decreased BbOhmm expression and consequently increased tolerances to free radical generating compounds (H
O
and menadione), whereas the ΔBbOsrR2 strain showed increased BbOhmm expression with concomitant decreased tolerances to these compounds. RNA and ChIP sequencing analysis revealed that BbOsrR1 directly regulated a wide range of antioxidation and transcription-associated genes, negatively affecting the expression of the BbClp1 cyclin and BbOsrR2. BbClp1 was shown to localize to the cell nucleus and negatively mediate oxidative stress responses. BbOsrR2 and BbOsrR3 were shown to feed into the Fus3-MAPK pathway in addition to regulating antioxidation and detoxification genes. Binding motifs for the three transcription factors were found to partially overlap in the promoter region of BbOhmm and other target genes. Whereas BbOsrR1 appeared to function independently, co-immunoprecipitation revealed complex formation between BbClp1, BbOsrR2, and BbOsrR3, with BbClp1 partially regulating BbOsrR2 phosphorylation.
These findings reveal a regulatory network mediated by BbOsrR1 and the formation of a BbClp1-BbOsrR2-BbOsrR3 complex that orchestrates fungal oxidative stress responses.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>38609978</pmid><doi>10.1186/s12915-024-01884-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8101-4313</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-7007 |
ispartof | BMC biology, 2024-04, Vol.22 (1), p.81-81, Article 81 |
issn | 1741-7007 1741-7007 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ff5e139c5f77446ea36f41811c61dc96 |
source | Publicly Available Content Database; PubMed Central |
subjects | Analysis Antioxidants Binding Cell Cycle Cell death Cellular stress response Chromatin Chromatin immunoprecipitation Cloning Complex formation Cyclins Detoxification DNA binding proteins Free radicals Fungal pathogen Fungi Gene expression Gene regulation Gene sequencing Genes Genomes Genotype & phenotype Health aspects Homeostasis Hydrogen Peroxide Hypoxia Immunoprecipitation Infections Insects Kinases MAP kinase Membrane proteins Menadione Metabolites Oxidative Stress Oxidative stress response Pathogens Phosphorylation Promoters Protein complex Proteins Regulation RNA Sequence analysis Tolerances Tolerances (dimensional) Transcription Transcription factor Transcription factors Transcription Factors - genetics Virulence Virulence (Microbiology) Yeast |
title | A network of transcription factors in complex with a regulating cell cycle cyclin orchestrates fungal oxidative stress responses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A59%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20network%20of%20transcription%20factors%20in%20complex%20with%20a%20regulating%20cell%20cycle%20cyclin%20orchestrates%20fungal%20oxidative%20stress%20responses&rft.jtitle=BMC%20biology&rft.au=Kan,%20Yanze&rft.date=2024-04-12&rft.volume=22&rft.issue=1&rft.spage=81&rft.epage=81&rft.pages=81-81&rft.artnum=81&rft.issn=1741-7007&rft.eissn=1741-7007&rft_id=info:doi/10.1186/s12915-024-01884-3&rft_dat=%3Cgale_doaj_%3EA789899011%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-2f5925707d52f51b3cb8847521641df20c222429ac832397e51735516a64ddfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037853812&rft_id=info:pmid/38609978&rft_galeid=A789899011&rfr_iscdi=true |