Loading…

Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration

Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-06, Vol.15 (1), p.4575-22, Article 4575
Main Authors: Bixel, M. Gabriele, Sivaraj, Kishor K., Timmen, Melanie, Mohanakrishnan, Vishal, Aravamudhan, Anusha, Adams, Susanne, Koh, Bong-Ihn, Jeong, Hyun-Woo, Kruse, Kai, Stange, Richard, Adams, Ralf H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c492t-a43dcfddfabc96f9130103d0c294fce967c20cb46d9e99e0d862361159eb74843
container_end_page 22
container_issue 1
container_start_page 4575
container_title Nature communications
container_volume 15
creator Bixel, M. Gabriele
Sivaraj, Kishor K.
Timmen, Melanie
Mohanakrishnan, Vishal
Aravamudhan, Anusha
Adams, Susanne
Koh, Bong-Ihn
Jeong, Hyun-Woo
Kruse, Kai
Stange, Richard
Adams, Ralf H.
description Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches. Fractured long bones regenerate through osteo-angiogenic coupling, but how calvarial bone healing occurs is not yet clear. Here they show that regenerating blood vessels separate from co-migrating progenitors in calvarial bones, resulting in osteoblasts mineralizing a previously vascularized lesion.
doi_str_mv 10.1038/s41467-024-48579-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ff6d0fbcab6542608c5995b6628992a5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ff6d0fbcab6542608c5995b6628992a5</doaj_id><sourcerecordid>3064389358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-a43dcfddfabc96f9130103d0c294fce967c20cb46d9e99e0d862361159eb74843</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2Kb2D7gwk7hxM8rXMLAyTeNHk0Y3uiYMHEZu5sIVZpr472Xu1GvrQkIC4Ty8nJcXoZcEvyWYyXeFEy76FlPectn1qu2eoHOKOWlJT9nTB_szdFnKDtfBFJGcP0dnTErGOynO0ZerOIY0QoQSSlPnEm1aDhO4xue0b1KZ4VR2Sw5xbKyZ7kwOZmqGFKHJsNazmUOKL9Azb6YCl_frBfr-8cO368_t7ddPN9dXt63lis6t4cxZ75w3g1XCK8JwNeWwpYp7C0r0lmI7cOEUKAXYSUGZIKRTMPRccnaBbjZdl8xOH3LYm_xLJxP08SDlUZs8BzuB9l447AdrBtFxKrC0nVLdIASVSlHTVa33m9ZhGfbgLMQ5m-mR6ONKDD_0mO40qQ1hjtdu3twr5PRzgTLrfSgWpslESEvRDItqmyi1oq__QXdpybH-1ZFiUrFOVopulM2plAz-1A3Beo1fb_HrGr8-xq9XH68e-jhd-RN2BdgGlMOaI-S_b_9H9jfsM7uk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064389358</pqid></control><display><type>article</type><title>Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bixel, M. Gabriele ; Sivaraj, Kishor K. ; Timmen, Melanie ; Mohanakrishnan, Vishal ; Aravamudhan, Anusha ; Adams, Susanne ; Koh, Bong-Ihn ; Jeong, Hyun-Woo ; Kruse, Kai ; Stange, Richard ; Adams, Ralf H.</creator><creatorcontrib>Bixel, M. Gabriele ; Sivaraj, Kishor K. ; Timmen, Melanie ; Mohanakrishnan, Vishal ; Aravamudhan, Anusha ; Adams, Susanne ; Koh, Bong-Ihn ; Jeong, Hyun-Woo ; Kruse, Kai ; Stange, Richard ; Adams, Ralf H.</creatorcontrib><description>Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches. Fractured long bones regenerate through osteo-angiogenic coupling, but how calvarial bone healing occurs is not yet clear. Here they show that regenerating blood vessels separate from co-migrating progenitors in calvarial bones, resulting in osteoblasts mineralizing a previously vascularized lesion.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-48579-5</identifier><identifier>PMID: 38834586</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 14 ; 14/69 ; 38/91 ; 42/34 ; 49/39 ; 631/136/815/816 ; 631/443/63 ; 631/80/84/750 ; 64/110 ; Angiogenesis ; Animals ; Bioengineering ; Blood flow ; Blood vessels ; Bone blood flow ; Bone growth ; Bone healing ; Bone Regeneration - physiology ; Bones ; Female ; Femur ; Fractures ; Healing ; Hemopoiesis ; Heterogeneity ; Humanities and Social Sciences ; Hypoxia ; Lesions ; Long bone ; Male ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Mice ; Mice, Inbred C57BL ; multidisciplinary ; Neovascularization, Physiologic ; Ossification ; Osteoblasts ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Osteogenesis ; Osteoprogenitor cells ; Periosteum ; Receptors, Notch - genetics ; Receptors, Notch - metabolism ; Regeneration ; Regeneration (physiology) ; Science ; Science (multidisciplinary) ; Signal Transduction ; Skull ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; Vascularization</subject><ispartof>Nature communications, 2024-06, Vol.15 (1), p.4575-22, Article 4575</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-a43dcfddfabc96f9130103d0c294fce967c20cb46d9e99e0d862361159eb74843</cites><orcidid>0000-0001-8656-8075 ; 0000-0002-8487-9715 ; 0000-0003-0807-3151 ; 0000-0003-3031-7677 ; 0000-0002-3636-0492 ; 0000-0001-5934-6100 ; 0000-0002-6976-6739 ; 0000-0003-0976-9230 ; 0000-0002-7951-7357 ; 0000-0002-5321-3400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3064389358/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3064389358?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38834586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bixel, M. Gabriele</creatorcontrib><creatorcontrib>Sivaraj, Kishor K.</creatorcontrib><creatorcontrib>Timmen, Melanie</creatorcontrib><creatorcontrib>Mohanakrishnan, Vishal</creatorcontrib><creatorcontrib>Aravamudhan, Anusha</creatorcontrib><creatorcontrib>Adams, Susanne</creatorcontrib><creatorcontrib>Koh, Bong-Ihn</creatorcontrib><creatorcontrib>Jeong, Hyun-Woo</creatorcontrib><creatorcontrib>Kruse, Kai</creatorcontrib><creatorcontrib>Stange, Richard</creatorcontrib><creatorcontrib>Adams, Ralf H.</creatorcontrib><title>Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches. Fractured long bones regenerate through osteo-angiogenic coupling, but how calvarial bone healing occurs is not yet clear. Here they show that regenerating blood vessels separate from co-migrating progenitors in calvarial bones, resulting in osteoblasts mineralizing a previously vascularized lesion.</description><subject>13/1</subject><subject>14</subject><subject>14/69</subject><subject>38/91</subject><subject>42/34</subject><subject>49/39</subject><subject>631/136/815/816</subject><subject>631/443/63</subject><subject>631/80/84/750</subject><subject>64/110</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Bioengineering</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>Bone blood flow</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone Regeneration - physiology</subject><subject>Bones</subject><subject>Female</subject><subject>Femur</subject><subject>Fractures</subject><subject>Healing</subject><subject>Hemopoiesis</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Hypoxia</subject><subject>Lesions</subject><subject>Long bone</subject><subject>Male</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>Neovascularization, Physiologic</subject><subject>Ossification</subject><subject>Osteoblasts</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis</subject><subject>Osteoprogenitor cells</subject><subject>Periosteum</subject><subject>Receptors, Notch - genetics</subject><subject>Receptors, Notch - metabolism</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Skull</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascularization</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1vFSEUhonR2Kb2D7gwk7hxM8rXMLAyTeNHk0Y3uiYMHEZu5sIVZpr472Xu1GvrQkIC4Ty8nJcXoZcEvyWYyXeFEy76FlPectn1qu2eoHOKOWlJT9nTB_szdFnKDtfBFJGcP0dnTErGOynO0ZerOIY0QoQSSlPnEm1aDhO4xue0b1KZ4VR2Sw5xbKyZ7kwOZmqGFKHJsNazmUOKL9Azb6YCl_frBfr-8cO368_t7ddPN9dXt63lis6t4cxZ75w3g1XCK8JwNeWwpYp7C0r0lmI7cOEUKAXYSUGZIKRTMPRccnaBbjZdl8xOH3LYm_xLJxP08SDlUZs8BzuB9l447AdrBtFxKrC0nVLdIASVSlHTVa33m9ZhGfbgLMQ5m-mR6ONKDD_0mO40qQ1hjtdu3twr5PRzgTLrfSgWpslESEvRDItqmyi1oq__QXdpybH-1ZFiUrFOVopulM2plAz-1A3Beo1fb_HrGr8-xq9XH68e-jhd-RN2BdgGlMOaI-S_b_9H9jfsM7uk</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>Bixel, M. Gabriele</creator><creator>Sivaraj, Kishor K.</creator><creator>Timmen, Melanie</creator><creator>Mohanakrishnan, Vishal</creator><creator>Aravamudhan, Anusha</creator><creator>Adams, Susanne</creator><creator>Koh, Bong-Ihn</creator><creator>Jeong, Hyun-Woo</creator><creator>Kruse, Kai</creator><creator>Stange, Richard</creator><creator>Adams, Ralf H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8656-8075</orcidid><orcidid>https://orcid.org/0000-0002-8487-9715</orcidid><orcidid>https://orcid.org/0000-0003-0807-3151</orcidid><orcidid>https://orcid.org/0000-0003-3031-7677</orcidid><orcidid>https://orcid.org/0000-0002-3636-0492</orcidid><orcidid>https://orcid.org/0000-0001-5934-6100</orcidid><orcidid>https://orcid.org/0000-0002-6976-6739</orcidid><orcidid>https://orcid.org/0000-0003-0976-9230</orcidid><orcidid>https://orcid.org/0000-0002-7951-7357</orcidid><orcidid>https://orcid.org/0000-0002-5321-3400</orcidid></search><sort><creationdate>20240604</creationdate><title>Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration</title><author>Bixel, M. Gabriele ; Sivaraj, Kishor K. ; Timmen, Melanie ; Mohanakrishnan, Vishal ; Aravamudhan, Anusha ; Adams, Susanne ; Koh, Bong-Ihn ; Jeong, Hyun-Woo ; Kruse, Kai ; Stange, Richard ; Adams, Ralf H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-a43dcfddfabc96f9130103d0c294fce967c20cb46d9e99e0d862361159eb74843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/1</topic><topic>14</topic><topic>14/69</topic><topic>38/91</topic><topic>42/34</topic><topic>49/39</topic><topic>631/136/815/816</topic><topic>631/443/63</topic><topic>631/80/84/750</topic><topic>64/110</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Bioengineering</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>Bone blood flow</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone Regeneration - physiology</topic><topic>Bones</topic><topic>Female</topic><topic>Femur</topic><topic>Fractures</topic><topic>Healing</topic><topic>Hemopoiesis</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Hypoxia</topic><topic>Lesions</topic><topic>Long bone</topic><topic>Male</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>Neovascularization, Physiologic</topic><topic>Ossification</topic><topic>Osteoblasts</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis</topic><topic>Osteoprogenitor cells</topic><topic>Periosteum</topic><topic>Receptors, Notch - genetics</topic><topic>Receptors, Notch - metabolism</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Skull</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bixel, M. Gabriele</creatorcontrib><creatorcontrib>Sivaraj, Kishor K.</creatorcontrib><creatorcontrib>Timmen, Melanie</creatorcontrib><creatorcontrib>Mohanakrishnan, Vishal</creatorcontrib><creatorcontrib>Aravamudhan, Anusha</creatorcontrib><creatorcontrib>Adams, Susanne</creatorcontrib><creatorcontrib>Koh, Bong-Ihn</creatorcontrib><creatorcontrib>Jeong, Hyun-Woo</creatorcontrib><creatorcontrib>Kruse, Kai</creatorcontrib><creatorcontrib>Stange, Richard</creatorcontrib><creatorcontrib>Adams, Ralf H.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bixel, M. Gabriele</au><au>Sivaraj, Kishor K.</au><au>Timmen, Melanie</au><au>Mohanakrishnan, Vishal</au><au>Aravamudhan, Anusha</au><au>Adams, Susanne</au><au>Koh, Bong-Ihn</au><au>Jeong, Hyun-Woo</au><au>Kruse, Kai</au><au>Stange, Richard</au><au>Adams, Ralf H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-06-04</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>4575</spage><epage>22</epage><pages>4575-22</pages><artnum>4575</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches. Fractured long bones regenerate through osteo-angiogenic coupling, but how calvarial bone healing occurs is not yet clear. Here they show that regenerating blood vessels separate from co-migrating progenitors in calvarial bones, resulting in osteoblasts mineralizing a previously vascularized lesion.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38834586</pmid><doi>10.1038/s41467-024-48579-5</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8656-8075</orcidid><orcidid>https://orcid.org/0000-0002-8487-9715</orcidid><orcidid>https://orcid.org/0000-0003-0807-3151</orcidid><orcidid>https://orcid.org/0000-0003-3031-7677</orcidid><orcidid>https://orcid.org/0000-0002-3636-0492</orcidid><orcidid>https://orcid.org/0000-0001-5934-6100</orcidid><orcidid>https://orcid.org/0000-0002-6976-6739</orcidid><orcidid>https://orcid.org/0000-0003-0976-9230</orcidid><orcidid>https://orcid.org/0000-0002-7951-7357</orcidid><orcidid>https://orcid.org/0000-0002-5321-3400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-06, Vol.15 (1), p.4575-22, Article 4575
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ff6d0fbcab6542608c5995b6628992a5
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
14
14/69
38/91
42/34
49/39
631/136/815/816
631/443/63
631/80/84/750
64/110
Angiogenesis
Animals
Bioengineering
Blood flow
Blood vessels
Bone blood flow
Bone growth
Bone healing
Bone Regeneration - physiology
Bones
Female
Femur
Fractures
Healing
Hemopoiesis
Heterogeneity
Humanities and Social Sciences
Hypoxia
Lesions
Long bone
Male
Mesenchymal stem cells
Mesenchymal Stem Cells - cytology
Mesenchymal Stem Cells - metabolism
Mice
Mice, Inbred C57BL
multidisciplinary
Neovascularization, Physiologic
Ossification
Osteoblasts
Osteoblasts - cytology
Osteoblasts - metabolism
Osteogenesis
Osteoprogenitor cells
Periosteum
Receptors, Notch - genetics
Receptors, Notch - metabolism
Regeneration
Regeneration (physiology)
Science
Science (multidisciplinary)
Signal Transduction
Skull
Vascular endothelial growth factor
Vascular Endothelial Growth Factor A - metabolism
Vascularization
title Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angiogenesis%20is%20uncoupled%20from%20osteogenesis%20during%20calvarial%20bone%20regeneration&rft.jtitle=Nature%20communications&rft.au=Bixel,%20M.%20Gabriele&rft.date=2024-06-04&rft.volume=15&rft.issue=1&rft.spage=4575&rft.epage=22&rft.pages=4575-22&rft.artnum=4575&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-48579-5&rft_dat=%3Cproquest_doaj_%3E3064389358%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-a43dcfddfabc96f9130103d0c294fce967c20cb46d9e99e0d862361159eb74843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064389358&rft_id=info:pmid/38834586&rfr_iscdi=true