Loading…
Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration
Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced...
Saved in:
Published in: | Nature communications 2024-06, Vol.15 (1), p.4575-22, Article 4575 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c492t-a43dcfddfabc96f9130103d0c294fce967c20cb46d9e99e0d862361159eb74843 |
container_end_page | 22 |
container_issue | 1 |
container_start_page | 4575 |
container_title | Nature communications |
container_volume | 15 |
creator | Bixel, M. Gabriele Sivaraj, Kishor K. Timmen, Melanie Mohanakrishnan, Vishal Aravamudhan, Anusha Adams, Susanne Koh, Bong-Ihn Jeong, Hyun-Woo Kruse, Kai Stange, Richard Adams, Ralf H. |
description | Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.
Fractured long bones regenerate through osteo-angiogenic coupling, but how calvarial bone healing occurs is not yet clear. Here they show that regenerating blood vessels separate from co-migrating progenitors in calvarial bones, resulting in osteoblasts mineralizing a previously vascularized lesion. |
doi_str_mv | 10.1038/s41467-024-48579-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ff6d0fbcab6542608c5995b6628992a5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ff6d0fbcab6542608c5995b6628992a5</doaj_id><sourcerecordid>3064389358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-a43dcfddfabc96f9130103d0c294fce967c20cb46d9e99e0d862361159eb74843</originalsourceid><addsrcrecordid>eNp9kU1vFSEUhonR2Kb2D7gwk7hxM8rXMLAyTeNHk0Y3uiYMHEZu5sIVZpr472Xu1GvrQkIC4Ty8nJcXoZcEvyWYyXeFEy76FlPectn1qu2eoHOKOWlJT9nTB_szdFnKDtfBFJGcP0dnTErGOynO0ZerOIY0QoQSSlPnEm1aDhO4xue0b1KZ4VR2Sw5xbKyZ7kwOZmqGFKHJsNazmUOKL9Azb6YCl_frBfr-8cO368_t7ddPN9dXt63lis6t4cxZ75w3g1XCK8JwNeWwpYp7C0r0lmI7cOEUKAXYSUGZIKRTMPRccnaBbjZdl8xOH3LYm_xLJxP08SDlUZs8BzuB9l447AdrBtFxKrC0nVLdIASVSlHTVa33m9ZhGfbgLMQ5m-mR6ONKDD_0mO40qQ1hjtdu3twr5PRzgTLrfSgWpslESEvRDItqmyi1oq__QXdpybH-1ZFiUrFOVopulM2plAz-1A3Beo1fb_HrGr8-xq9XH68e-jhd-RN2BdgGlMOaI-S_b_9H9jfsM7uk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3064389358</pqid></control><display><type>article</type><title>Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central (Open access)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Bixel, M. Gabriele ; Sivaraj, Kishor K. ; Timmen, Melanie ; Mohanakrishnan, Vishal ; Aravamudhan, Anusha ; Adams, Susanne ; Koh, Bong-Ihn ; Jeong, Hyun-Woo ; Kruse, Kai ; Stange, Richard ; Adams, Ralf H.</creator><creatorcontrib>Bixel, M. Gabriele ; Sivaraj, Kishor K. ; Timmen, Melanie ; Mohanakrishnan, Vishal ; Aravamudhan, Anusha ; Adams, Susanne ; Koh, Bong-Ihn ; Jeong, Hyun-Woo ; Kruse, Kai ; Stange, Richard ; Adams, Ralf H.</creatorcontrib><description>Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.
Fractured long bones regenerate through osteo-angiogenic coupling, but how calvarial bone healing occurs is not yet clear. Here they show that regenerating blood vessels separate from co-migrating progenitors in calvarial bones, resulting in osteoblasts mineralizing a previously vascularized lesion.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-48579-5</identifier><identifier>PMID: 38834586</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 14 ; 14/69 ; 38/91 ; 42/34 ; 49/39 ; 631/136/815/816 ; 631/443/63 ; 631/80/84/750 ; 64/110 ; Angiogenesis ; Animals ; Bioengineering ; Blood flow ; Blood vessels ; Bone blood flow ; Bone growth ; Bone healing ; Bone Regeneration - physiology ; Bones ; Female ; Femur ; Fractures ; Healing ; Hemopoiesis ; Heterogeneity ; Humanities and Social Sciences ; Hypoxia ; Lesions ; Long bone ; Male ; Mesenchymal stem cells ; Mesenchymal Stem Cells - cytology ; Mesenchymal Stem Cells - metabolism ; Mice ; Mice, Inbred C57BL ; multidisciplinary ; Neovascularization, Physiologic ; Ossification ; Osteoblasts ; Osteoblasts - cytology ; Osteoblasts - metabolism ; Osteogenesis ; Osteoprogenitor cells ; Periosteum ; Receptors, Notch - genetics ; Receptors, Notch - metabolism ; Regeneration ; Regeneration (physiology) ; Science ; Science (multidisciplinary) ; Signal Transduction ; Skull ; Vascular endothelial growth factor ; Vascular Endothelial Growth Factor A - metabolism ; Vascularization</subject><ispartof>Nature communications, 2024-06, Vol.15 (1), p.4575-22, Article 4575</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c492t-a43dcfddfabc96f9130103d0c294fce967c20cb46d9e99e0d862361159eb74843</cites><orcidid>0000-0001-8656-8075 ; 0000-0002-8487-9715 ; 0000-0003-0807-3151 ; 0000-0003-3031-7677 ; 0000-0002-3636-0492 ; 0000-0001-5934-6100 ; 0000-0002-6976-6739 ; 0000-0003-0976-9230 ; 0000-0002-7951-7357 ; 0000-0002-5321-3400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3064389358/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3064389358?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38834586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bixel, M. Gabriele</creatorcontrib><creatorcontrib>Sivaraj, Kishor K.</creatorcontrib><creatorcontrib>Timmen, Melanie</creatorcontrib><creatorcontrib>Mohanakrishnan, Vishal</creatorcontrib><creatorcontrib>Aravamudhan, Anusha</creatorcontrib><creatorcontrib>Adams, Susanne</creatorcontrib><creatorcontrib>Koh, Bong-Ihn</creatorcontrib><creatorcontrib>Jeong, Hyun-Woo</creatorcontrib><creatorcontrib>Kruse, Kai</creatorcontrib><creatorcontrib>Stange, Richard</creatorcontrib><creatorcontrib>Adams, Ralf H.</creatorcontrib><title>Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.
Fractured long bones regenerate through osteo-angiogenic coupling, but how calvarial bone healing occurs is not yet clear. Here they show that regenerating blood vessels separate from co-migrating progenitors in calvarial bones, resulting in osteoblasts mineralizing a previously vascularized lesion.</description><subject>13/1</subject><subject>14</subject><subject>14/69</subject><subject>38/91</subject><subject>42/34</subject><subject>49/39</subject><subject>631/136/815/816</subject><subject>631/443/63</subject><subject>631/80/84/750</subject><subject>64/110</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Bioengineering</subject><subject>Blood flow</subject><subject>Blood vessels</subject><subject>Bone blood flow</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone Regeneration - physiology</subject><subject>Bones</subject><subject>Female</subject><subject>Femur</subject><subject>Fractures</subject><subject>Healing</subject><subject>Hemopoiesis</subject><subject>Heterogeneity</subject><subject>Humanities and Social Sciences</subject><subject>Hypoxia</subject><subject>Lesions</subject><subject>Long bone</subject><subject>Male</subject><subject>Mesenchymal stem cells</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchymal Stem Cells - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>Neovascularization, Physiologic</subject><subject>Ossification</subject><subject>Osteoblasts</subject><subject>Osteoblasts - cytology</subject><subject>Osteoblasts - metabolism</subject><subject>Osteogenesis</subject><subject>Osteoprogenitor cells</subject><subject>Periosteum</subject><subject>Receptors, Notch - genetics</subject><subject>Receptors, Notch - metabolism</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Skull</subject><subject>Vascular endothelial growth factor</subject><subject>Vascular Endothelial Growth Factor A - metabolism</subject><subject>Vascularization</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1vFSEUhonR2Kb2D7gwk7hxM8rXMLAyTeNHk0Y3uiYMHEZu5sIVZpr472Xu1GvrQkIC4Ty8nJcXoZcEvyWYyXeFEy76FlPectn1qu2eoHOKOWlJT9nTB_szdFnKDtfBFJGcP0dnTErGOynO0ZerOIY0QoQSSlPnEm1aDhO4xue0b1KZ4VR2Sw5xbKyZ7kwOZmqGFKHJsNazmUOKL9Azb6YCl_frBfr-8cO368_t7ddPN9dXt63lis6t4cxZ75w3g1XCK8JwNeWwpYp7C0r0lmI7cOEUKAXYSUGZIKRTMPRccnaBbjZdl8xOH3LYm_xLJxP08SDlUZs8BzuB9l447AdrBtFxKrC0nVLdIASVSlHTVa33m9ZhGfbgLMQ5m-mR6ONKDD_0mO40qQ1hjtdu3twr5PRzgTLrfSgWpslESEvRDItqmyi1oq__QXdpybH-1ZFiUrFOVopulM2plAz-1A3Beo1fb_HrGr8-xq9XH68e-jhd-RN2BdgGlMOaI-S_b_9H9jfsM7uk</recordid><startdate>20240604</startdate><enddate>20240604</enddate><creator>Bixel, M. Gabriele</creator><creator>Sivaraj, Kishor K.</creator><creator>Timmen, Melanie</creator><creator>Mohanakrishnan, Vishal</creator><creator>Aravamudhan, Anusha</creator><creator>Adams, Susanne</creator><creator>Koh, Bong-Ihn</creator><creator>Jeong, Hyun-Woo</creator><creator>Kruse, Kai</creator><creator>Stange, Richard</creator><creator>Adams, Ralf H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8656-8075</orcidid><orcidid>https://orcid.org/0000-0002-8487-9715</orcidid><orcidid>https://orcid.org/0000-0003-0807-3151</orcidid><orcidid>https://orcid.org/0000-0003-3031-7677</orcidid><orcidid>https://orcid.org/0000-0002-3636-0492</orcidid><orcidid>https://orcid.org/0000-0001-5934-6100</orcidid><orcidid>https://orcid.org/0000-0002-6976-6739</orcidid><orcidid>https://orcid.org/0000-0003-0976-9230</orcidid><orcidid>https://orcid.org/0000-0002-7951-7357</orcidid><orcidid>https://orcid.org/0000-0002-5321-3400</orcidid></search><sort><creationdate>20240604</creationdate><title>Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration</title><author>Bixel, M. Gabriele ; Sivaraj, Kishor K. ; Timmen, Melanie ; Mohanakrishnan, Vishal ; Aravamudhan, Anusha ; Adams, Susanne ; Koh, Bong-Ihn ; Jeong, Hyun-Woo ; Kruse, Kai ; Stange, Richard ; Adams, Ralf H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-a43dcfddfabc96f9130103d0c294fce967c20cb46d9e99e0d862361159eb74843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/1</topic><topic>14</topic><topic>14/69</topic><topic>38/91</topic><topic>42/34</topic><topic>49/39</topic><topic>631/136/815/816</topic><topic>631/443/63</topic><topic>631/80/84/750</topic><topic>64/110</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Bioengineering</topic><topic>Blood flow</topic><topic>Blood vessels</topic><topic>Bone blood flow</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone Regeneration - physiology</topic><topic>Bones</topic><topic>Female</topic><topic>Femur</topic><topic>Fractures</topic><topic>Healing</topic><topic>Hemopoiesis</topic><topic>Heterogeneity</topic><topic>Humanities and Social Sciences</topic><topic>Hypoxia</topic><topic>Lesions</topic><topic>Long bone</topic><topic>Male</topic><topic>Mesenchymal stem cells</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchymal Stem Cells - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>Neovascularization, Physiologic</topic><topic>Ossification</topic><topic>Osteoblasts</topic><topic>Osteoblasts - cytology</topic><topic>Osteoblasts - metabolism</topic><topic>Osteogenesis</topic><topic>Osteoprogenitor cells</topic><topic>Periosteum</topic><topic>Receptors, Notch - genetics</topic><topic>Receptors, Notch - metabolism</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Skull</topic><topic>Vascular endothelial growth factor</topic><topic>Vascular Endothelial Growth Factor A - metabolism</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bixel, M. Gabriele</creatorcontrib><creatorcontrib>Sivaraj, Kishor K.</creatorcontrib><creatorcontrib>Timmen, Melanie</creatorcontrib><creatorcontrib>Mohanakrishnan, Vishal</creatorcontrib><creatorcontrib>Aravamudhan, Anusha</creatorcontrib><creatorcontrib>Adams, Susanne</creatorcontrib><creatorcontrib>Koh, Bong-Ihn</creatorcontrib><creatorcontrib>Jeong, Hyun-Woo</creatorcontrib><creatorcontrib>Kruse, Kai</creatorcontrib><creatorcontrib>Stange, Richard</creatorcontrib><creatorcontrib>Adams, Ralf H.</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bixel, M. Gabriele</au><au>Sivaraj, Kishor K.</au><au>Timmen, Melanie</au><au>Mohanakrishnan, Vishal</au><au>Aravamudhan, Anusha</au><au>Adams, Susanne</au><au>Koh, Bong-Ihn</au><au>Jeong, Hyun-Woo</au><au>Kruse, Kai</au><au>Stange, Richard</au><au>Adams, Ralf H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-06-04</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>4575</spage><epage>22</epage><pages>4575-22</pages><artnum>4575</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.
Fractured long bones regenerate through osteo-angiogenic coupling, but how calvarial bone healing occurs is not yet clear. Here they show that regenerating blood vessels separate from co-migrating progenitors in calvarial bones, resulting in osteoblasts mineralizing a previously vascularized lesion.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38834586</pmid><doi>10.1038/s41467-024-48579-5</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8656-8075</orcidid><orcidid>https://orcid.org/0000-0002-8487-9715</orcidid><orcidid>https://orcid.org/0000-0003-0807-3151</orcidid><orcidid>https://orcid.org/0000-0003-3031-7677</orcidid><orcidid>https://orcid.org/0000-0002-3636-0492</orcidid><orcidid>https://orcid.org/0000-0001-5934-6100</orcidid><orcidid>https://orcid.org/0000-0002-6976-6739</orcidid><orcidid>https://orcid.org/0000-0003-0976-9230</orcidid><orcidid>https://orcid.org/0000-0002-7951-7357</orcidid><orcidid>https://orcid.org/0000-0002-5321-3400</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-06, Vol.15 (1), p.4575-22, Article 4575 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ff6d0fbcab6542608c5995b6628992a5 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central (Open access); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 14 14/69 38/91 42/34 49/39 631/136/815/816 631/443/63 631/80/84/750 64/110 Angiogenesis Animals Bioengineering Blood flow Blood vessels Bone blood flow Bone growth Bone healing Bone Regeneration - physiology Bones Female Femur Fractures Healing Hemopoiesis Heterogeneity Humanities and Social Sciences Hypoxia Lesions Long bone Male Mesenchymal stem cells Mesenchymal Stem Cells - cytology Mesenchymal Stem Cells - metabolism Mice Mice, Inbred C57BL multidisciplinary Neovascularization, Physiologic Ossification Osteoblasts Osteoblasts - cytology Osteoblasts - metabolism Osteogenesis Osteoprogenitor cells Periosteum Receptors, Notch - genetics Receptors, Notch - metabolism Regeneration Regeneration (physiology) Science Science (multidisciplinary) Signal Transduction Skull Vascular endothelial growth factor Vascular Endothelial Growth Factor A - metabolism Vascularization |
title | Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angiogenesis%20is%20uncoupled%20from%20osteogenesis%20during%20calvarial%20bone%20regeneration&rft.jtitle=Nature%20communications&rft.au=Bixel,%20M.%20Gabriele&rft.date=2024-06-04&rft.volume=15&rft.issue=1&rft.spage=4575&rft.epage=22&rft.pages=4575-22&rft.artnum=4575&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-48579-5&rft_dat=%3Cproquest_doaj_%3E3064389358%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c492t-a43dcfddfabc96f9130103d0c294fce967c20cb46d9e99e0d862361159eb74843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3064389358&rft_id=info:pmid/38834586&rfr_iscdi=true |