Loading…
Human Activity Detection Using Smart Wearable Sensing Devices with Feed Forward Neural Networks and PSO
Hospitals must continually monitor their patients’ actions to lower the chance of accidents, such as patient falls and slides. Human behavior is difficult to track due to the complexity of human activities and the unpredictable nature of their conduct. As a result, creating a static link that is use...
Saved in:
Published in: | Applied sciences 2023-03, Vol.13 (6), p.3716 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hospitals must continually monitor their patients’ actions to lower the chance of accidents, such as patient falls and slides. Human behavior is difficult to track due to the complexity of human activities and the unpredictable nature of their conduct. As a result, creating a static link that is used to influence human behavior is challenging, since it is hard to forecast how individuals will think or act in response to a certain event. Mobility tracking depends on intelligent monitoring systems that apply artificial intelligence (AI) applications referred to as “categories”. Because motion sensors, such as gyroscopes and accelerometers, output unconnected data that lack labels, event detection is a vital task. The fall feature parameters of tridimensional accelerometers and gyroscope sensors are presented and used, and the classification technique is based on distinguishing characteristics. This study focuses on the age-old problem of tracking turbulence in motion to improve detection precision. We trained the model, considering that detection accuracy is limited by factors such as the subject’s mass, velocity, and gait style. This is performed by employing an experimental dataset. When we used the sophisticated technique of particle swarm optimization (PSO) in combination with a four-stage forward neural network (4SFNN) to forecast four different types of turbulent motion, we observed that the total prediction accuracy was 98.615% accurate. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app13063716 |