Loading…
Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis
With the rapid emergence of drug-resistant strains of (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potenti...
Saved in:
Published in: | International journal of molecular sciences 2024-04, Vol.25 (7), p.3764 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3 |
container_end_page | |
container_issue | 7 |
container_start_page | 3764 |
container_title | International journal of molecular sciences |
container_volume | 25 |
creator | Qiu, Xiaofei Zhang, Qianqian Li, Zhaoguo Zhang, Juan Liu, Huanxiang |
description | With the rapid emergence of drug-resistant strains of
(Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors. |
doi_str_mv | 10.3390/ijms25073764 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ff78e4d5cc9b4d33a51b3141afa809fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ff78e4d5cc9b4d33a51b3141afa809fb</doaj_id><sourcerecordid>3037587881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3</originalsourceid><addsrcrecordid>eNpdkktvFDEMx0cIRB9w44wiceHQhTwnmWNboKwoD5VyHuXh2c1qJinJTKv5PnxQsrulqjg5sn_-245dVa8IfsdYg9_7zZCpwJLJmj-pDgmndIFxLZ8-eh9URzlvMKaMiuZ5dcBUTaiQ7LD6cwW3oHsfVmhcA1qGEZK2o48BfQW71sHnARkY7wCKZ7bRlCgkPw1onAwkO_Ux-4wu5nSGdHDoW7yNxkfrwwn6-eNKkqYIpzit1ujMB7ctdL2GNEQ3Bz14m3dZH3zOJUfvCn_xAcZt5DTofi7qL6pnne4zvLy3x9WvTx-vzz8vLr9fLM9PLxeWUzYuHDBGalwbK2TtFFCpnLHOGEu5I4oRIq3rqCUglBJlfq0BG9ERbrbfZ9lxtdzruqg37U3yg05zG7Vvd46YVq1OpbMe2q6TCrgT1jaGO8a0IIYRTnSnFW46U7Te7rVuUvw9QR7bwWcLfa8DxCm3DDPFqSSKFvTNf-gmTqnMvqOkUFIpUqiTPWVTzDlB99Agwe32EtrHl1Dw1_eikxnAPcD_Vs_-AodJsco</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037587881</pqid></control><display><type>article</type><title>Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis</title><source>Open Access: PubMed Central</source><source>Access via ProQuest (Open Access)</source><creator>Qiu, Xiaofei ; Zhang, Qianqian ; Li, Zhaoguo ; Zhang, Juan ; Liu, Huanxiang</creator><creatorcontrib>Qiu, Xiaofei ; Zhang, Qianqian ; Li, Zhaoguo ; Zhang, Juan ; Liu, Huanxiang</creatorcontrib><description>With the rapid emergence of drug-resistant strains of
(Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms25073764</identifier><identifier>PMID: 38612573</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acquired immune deficiency syndrome ; Adenosine Triphosphate ; AIDS ; Antitubercular Agents - pharmacology ; binding mechanism ; Binding sites ; Clinical trials ; Decomposition ; Drug resistance ; Energy ; Flexibility ; GyrB ; Infectious diseases ; Ligands ; molecular dynamics (MD) simulations ; Molecular Dynamics Simulation ; Mycobacterium tuberculosis ; novobiocin ; Novobiocin - pharmacology ; Proteins ; Simulation ; SPR719 ; Staphylococcus infections ; Thermodynamics ; Tropical diseases ; Tuberculosis</subject><ispartof>International journal of molecular sciences, 2024-04, Vol.25 (7), p.3764</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3</citedby><cites>FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3</cites><orcidid>0009-0000-1702-9182 ; 0000-0002-4422-4968 ; 0000-0002-9284-3667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3037587881/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3037587881?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38612573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Xiaofei</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Li, Zhaoguo</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Liu, Huanxiang</creatorcontrib><title>Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>With the rapid emergence of drug-resistant strains of
(Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors.</description><subject>Acquired immune deficiency syndrome</subject><subject>Adenosine Triphosphate</subject><subject>AIDS</subject><subject>Antitubercular Agents - pharmacology</subject><subject>binding mechanism</subject><subject>Binding sites</subject><subject>Clinical trials</subject><subject>Decomposition</subject><subject>Drug resistance</subject><subject>Energy</subject><subject>Flexibility</subject><subject>GyrB</subject><subject>Infectious diseases</subject><subject>Ligands</subject><subject>molecular dynamics (MD) simulations</subject><subject>Molecular Dynamics Simulation</subject><subject>Mycobacterium tuberculosis</subject><subject>novobiocin</subject><subject>Novobiocin - pharmacology</subject><subject>Proteins</subject><subject>Simulation</subject><subject>SPR719</subject><subject>Staphylococcus infections</subject><subject>Thermodynamics</subject><subject>Tropical diseases</subject><subject>Tuberculosis</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvFDEMx0cIRB9w44wiceHQhTwnmWNboKwoD5VyHuXh2c1qJinJTKv5PnxQsrulqjg5sn_-245dVa8IfsdYg9_7zZCpwJLJmj-pDgmndIFxLZ8-eh9URzlvMKaMiuZ5dcBUTaiQ7LD6cwW3oHsfVmhcA1qGEZK2o48BfQW71sHnARkY7wCKZ7bRlCgkPw1onAwkO_Ux-4wu5nSGdHDoW7yNxkfrwwn6-eNKkqYIpzit1ujMB7ctdL2GNEQ3Bz14m3dZH3zOJUfvCn_xAcZt5DTofi7qL6pnne4zvLy3x9WvTx-vzz8vLr9fLM9PLxeWUzYuHDBGalwbK2TtFFCpnLHOGEu5I4oRIq3rqCUglBJlfq0BG9ERbrbfZ9lxtdzruqg37U3yg05zG7Vvd46YVq1OpbMe2q6TCrgT1jaGO8a0IIYRTnSnFW46U7Te7rVuUvw9QR7bwWcLfa8DxCm3DDPFqSSKFvTNf-gmTqnMvqOkUFIpUqiTPWVTzDlB99Agwe32EtrHl1Dw1_eikxnAPcD_Vs_-AodJsco</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Qiu, Xiaofei</creator><creator>Zhang, Qianqian</creator><creator>Li, Zhaoguo</creator><creator>Zhang, Juan</creator><creator>Liu, Huanxiang</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-1702-9182</orcidid><orcidid>https://orcid.org/0000-0002-4422-4968</orcidid><orcidid>https://orcid.org/0000-0002-9284-3667</orcidid></search><sort><creationdate>20240401</creationdate><title>Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis</title><author>Qiu, Xiaofei ; Zhang, Qianqian ; Li, Zhaoguo ; Zhang, Juan ; Liu, Huanxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>Adenosine Triphosphate</topic><topic>AIDS</topic><topic>Antitubercular Agents - pharmacology</topic><topic>binding mechanism</topic><topic>Binding sites</topic><topic>Clinical trials</topic><topic>Decomposition</topic><topic>Drug resistance</topic><topic>Energy</topic><topic>Flexibility</topic><topic>GyrB</topic><topic>Infectious diseases</topic><topic>Ligands</topic><topic>molecular dynamics (MD) simulations</topic><topic>Molecular Dynamics Simulation</topic><topic>Mycobacterium tuberculosis</topic><topic>novobiocin</topic><topic>Novobiocin - pharmacology</topic><topic>Proteins</topic><topic>Simulation</topic><topic>SPR719</topic><topic>Staphylococcus infections</topic><topic>Thermodynamics</topic><topic>Tropical diseases</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Xiaofei</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Li, Zhaoguo</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Liu, Huanxiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Xiaofei</au><au>Zhang, Qianqian</au><au>Li, Zhaoguo</au><au>Zhang, Juan</au><au>Liu, Huanxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>25</volume><issue>7</issue><spage>3764</spage><pages>3764-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>With the rapid emergence of drug-resistant strains of
(Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38612573</pmid><doi>10.3390/ijms25073764</doi><orcidid>https://orcid.org/0009-0000-1702-9182</orcidid><orcidid>https://orcid.org/0000-0002-4422-4968</orcidid><orcidid>https://orcid.org/0000-0002-9284-3667</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2024-04, Vol.25 (7), p.3764 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ff78e4d5cc9b4d33a51b3141afa809fb |
source | Open Access: PubMed Central; Access via ProQuest (Open Access) |
subjects | Acquired immune deficiency syndrome Adenosine Triphosphate AIDS Antitubercular Agents - pharmacology binding mechanism Binding sites Clinical trials Decomposition Drug resistance Energy Flexibility GyrB Infectious diseases Ligands molecular dynamics (MD) simulations Molecular Dynamics Simulation Mycobacterium tuberculosis novobiocin Novobiocin - pharmacology Proteins Simulation SPR719 Staphylococcus infections Thermodynamics Tropical diseases Tuberculosis |
title | Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Interaction%20Mechanism%20between%20Mycobacterium%20tuberculosis%20GyrB%20and%20Novobiocin,%20SPR719%20through%20Binding%20Thermodynamics%20and%20Dissociation%20Kinetics%20Analysis&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Qiu,%20Xiaofei&rft.date=2024-04-01&rft.volume=25&rft.issue=7&rft.spage=3764&rft.pages=3764-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms25073764&rft_dat=%3Cproquest_doaj_%3E3037587881%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037587881&rft_id=info:pmid/38612573&rfr_iscdi=true |