Loading…

Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis

With the rapid emergence of drug-resistant strains of (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potenti...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2024-04, Vol.25 (7), p.3764
Main Authors: Qiu, Xiaofei, Zhang, Qianqian, Li, Zhaoguo, Zhang, Juan, Liu, Huanxiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3
cites cdi_FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3
container_end_page
container_issue 7
container_start_page 3764
container_title International journal of molecular sciences
container_volume 25
creator Qiu, Xiaofei
Zhang, Qianqian
Li, Zhaoguo
Zhang, Juan
Liu, Huanxiang
description With the rapid emergence of drug-resistant strains of (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors.
doi_str_mv 10.3390/ijms25073764
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ff78e4d5cc9b4d33a51b3141afa809fb</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ff78e4d5cc9b4d33a51b3141afa809fb</doaj_id><sourcerecordid>3037587881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3</originalsourceid><addsrcrecordid>eNpdkktvFDEMx0cIRB9w44wiceHQhTwnmWNboKwoD5VyHuXh2c1qJinJTKv5PnxQsrulqjg5sn_-245dVa8IfsdYg9_7zZCpwJLJmj-pDgmndIFxLZ8-eh9URzlvMKaMiuZ5dcBUTaiQ7LD6cwW3oHsfVmhcA1qGEZK2o48BfQW71sHnARkY7wCKZ7bRlCgkPw1onAwkO_Ux-4wu5nSGdHDoW7yNxkfrwwn6-eNKkqYIpzit1ujMB7ctdL2GNEQ3Bz14m3dZH3zOJUfvCn_xAcZt5DTofi7qL6pnne4zvLy3x9WvTx-vzz8vLr9fLM9PLxeWUzYuHDBGalwbK2TtFFCpnLHOGEu5I4oRIq3rqCUglBJlfq0BG9ERbrbfZ9lxtdzruqg37U3yg05zG7Vvd46YVq1OpbMe2q6TCrgT1jaGO8a0IIYRTnSnFW46U7Te7rVuUvw9QR7bwWcLfa8DxCm3DDPFqSSKFvTNf-gmTqnMvqOkUFIpUqiTPWVTzDlB99Agwe32EtrHl1Dw1_eikxnAPcD_Vs_-AodJsco</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3037587881</pqid></control><display><type>article</type><title>Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis</title><source>Open Access: PubMed Central</source><source>Access via ProQuest (Open Access)</source><creator>Qiu, Xiaofei ; Zhang, Qianqian ; Li, Zhaoguo ; Zhang, Juan ; Liu, Huanxiang</creator><creatorcontrib>Qiu, Xiaofei ; Zhang, Qianqian ; Li, Zhaoguo ; Zhang, Juan ; Liu, Huanxiang</creatorcontrib><description>With the rapid emergence of drug-resistant strains of (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms25073764</identifier><identifier>PMID: 38612573</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Acquired immune deficiency syndrome ; Adenosine Triphosphate ; AIDS ; Antitubercular Agents - pharmacology ; binding mechanism ; Binding sites ; Clinical trials ; Decomposition ; Drug resistance ; Energy ; Flexibility ; GyrB ; Infectious diseases ; Ligands ; molecular dynamics (MD) simulations ; Molecular Dynamics Simulation ; Mycobacterium tuberculosis ; novobiocin ; Novobiocin - pharmacology ; Proteins ; Simulation ; SPR719 ; Staphylococcus infections ; Thermodynamics ; Tropical diseases ; Tuberculosis</subject><ispartof>International journal of molecular sciences, 2024-04, Vol.25 (7), p.3764</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3</citedby><cites>FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3</cites><orcidid>0009-0000-1702-9182 ; 0000-0002-4422-4968 ; 0000-0002-9284-3667</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3037587881/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3037587881?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38612573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Xiaofei</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Li, Zhaoguo</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Liu, Huanxiang</creatorcontrib><title>Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>With the rapid emergence of drug-resistant strains of (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors.</description><subject>Acquired immune deficiency syndrome</subject><subject>Adenosine Triphosphate</subject><subject>AIDS</subject><subject>Antitubercular Agents - pharmacology</subject><subject>binding mechanism</subject><subject>Binding sites</subject><subject>Clinical trials</subject><subject>Decomposition</subject><subject>Drug resistance</subject><subject>Energy</subject><subject>Flexibility</subject><subject>GyrB</subject><subject>Infectious diseases</subject><subject>Ligands</subject><subject>molecular dynamics (MD) simulations</subject><subject>Molecular Dynamics Simulation</subject><subject>Mycobacterium tuberculosis</subject><subject>novobiocin</subject><subject>Novobiocin - pharmacology</subject><subject>Proteins</subject><subject>Simulation</subject><subject>SPR719</subject><subject>Staphylococcus infections</subject><subject>Thermodynamics</subject><subject>Tropical diseases</subject><subject>Tuberculosis</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvFDEMx0cIRB9w44wiceHQhTwnmWNboKwoD5VyHuXh2c1qJinJTKv5PnxQsrulqjg5sn_-245dVa8IfsdYg9_7zZCpwJLJmj-pDgmndIFxLZ8-eh9URzlvMKaMiuZ5dcBUTaiQ7LD6cwW3oHsfVmhcA1qGEZK2o48BfQW71sHnARkY7wCKZ7bRlCgkPw1onAwkO_Ux-4wu5nSGdHDoW7yNxkfrwwn6-eNKkqYIpzit1ujMB7ctdL2GNEQ3Bz14m3dZH3zOJUfvCn_xAcZt5DTofi7qL6pnne4zvLy3x9WvTx-vzz8vLr9fLM9PLxeWUzYuHDBGalwbK2TtFFCpnLHOGEu5I4oRIq3rqCUglBJlfq0BG9ERbrbfZ9lxtdzruqg37U3yg05zG7Vvd46YVq1OpbMe2q6TCrgT1jaGO8a0IIYRTnSnFW46U7Te7rVuUvw9QR7bwWcLfa8DxCm3DDPFqSSKFvTNf-gmTqnMvqOkUFIpUqiTPWVTzDlB99Agwe32EtrHl1Dw1_eikxnAPcD_Vs_-AodJsco</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Qiu, Xiaofei</creator><creator>Zhang, Qianqian</creator><creator>Li, Zhaoguo</creator><creator>Zhang, Juan</creator><creator>Liu, Huanxiang</creator><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0000-1702-9182</orcidid><orcidid>https://orcid.org/0000-0002-4422-4968</orcidid><orcidid>https://orcid.org/0000-0002-9284-3667</orcidid></search><sort><creationdate>20240401</creationdate><title>Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis</title><author>Qiu, Xiaofei ; Zhang, Qianqian ; Li, Zhaoguo ; Zhang, Juan ; Liu, Huanxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>Adenosine Triphosphate</topic><topic>AIDS</topic><topic>Antitubercular Agents - pharmacology</topic><topic>binding mechanism</topic><topic>Binding sites</topic><topic>Clinical trials</topic><topic>Decomposition</topic><topic>Drug resistance</topic><topic>Energy</topic><topic>Flexibility</topic><topic>GyrB</topic><topic>Infectious diseases</topic><topic>Ligands</topic><topic>molecular dynamics (MD) simulations</topic><topic>Molecular Dynamics Simulation</topic><topic>Mycobacterium tuberculosis</topic><topic>novobiocin</topic><topic>Novobiocin - pharmacology</topic><topic>Proteins</topic><topic>Simulation</topic><topic>SPR719</topic><topic>Staphylococcus infections</topic><topic>Thermodynamics</topic><topic>Tropical diseases</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Xiaofei</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Li, Zhaoguo</creatorcontrib><creatorcontrib>Zhang, Juan</creatorcontrib><creatorcontrib>Liu, Huanxiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Xiaofei</au><au>Zhang, Qianqian</au><au>Li, Zhaoguo</au><au>Zhang, Juan</au><au>Liu, Huanxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>25</volume><issue>7</issue><spage>3764</spage><pages>3764-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>With the rapid emergence of drug-resistant strains of (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38612573</pmid><doi>10.3390/ijms25073764</doi><orcidid>https://orcid.org/0009-0000-1702-9182</orcidid><orcidid>https://orcid.org/0000-0002-4422-4968</orcidid><orcidid>https://orcid.org/0000-0002-9284-3667</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2024-04, Vol.25 (7), p.3764
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ff78e4d5cc9b4d33a51b3141afa809fb
source Open Access: PubMed Central; Access via ProQuest (Open Access)
subjects Acquired immune deficiency syndrome
Adenosine Triphosphate
AIDS
Antitubercular Agents - pharmacology
binding mechanism
Binding sites
Clinical trials
Decomposition
Drug resistance
Energy
Flexibility
GyrB
Infectious diseases
Ligands
molecular dynamics (MD) simulations
Molecular Dynamics Simulation
Mycobacterium tuberculosis
novobiocin
Novobiocin - pharmacology
Proteins
Simulation
SPR719
Staphylococcus infections
Thermodynamics
Tropical diseases
Tuberculosis
title Revealing the Interaction Mechanism between Mycobacterium tuberculosis GyrB and Novobiocin, SPR719 through Binding Thermodynamics and Dissociation Kinetics Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Interaction%20Mechanism%20between%20Mycobacterium%20tuberculosis%20GyrB%20and%20Novobiocin,%20SPR719%20through%20Binding%20Thermodynamics%20and%20Dissociation%20Kinetics%20Analysis&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Qiu,%20Xiaofei&rft.date=2024-04-01&rft.volume=25&rft.issue=7&rft.spage=3764&rft.pages=3764-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms25073764&rft_dat=%3Cproquest_doaj_%3E3037587881%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-de331606bc576d8e278dbcdbbc24d183117cdf2c1e5885257aae0b5f14b0737c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3037587881&rft_id=info:pmid/38612573&rfr_iscdi=true