Loading…

Thermodynamic and Experimental Study on Migration Characteristics of Heavy Metals during the Melting Process of Incineration Fly Ash

The migration characteristics of heavy metals during the melting process were one of the key factors for safe treatment and resource utilization of incineration fly ash (IFA). In this paper, the material variation of heavy metal elements of Pb, Zn, Cu, and Fe during the IFA melting process was simul...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2022-06, Vol.12 (6), p.1036
Main Authors: Guo, Yufeng, Gong, Chen, Yang, Lingzhi, Hu, Ming, Hu, Xun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The migration characteristics of heavy metals during the melting process were one of the key factors for safe treatment and resource utilization of incineration fly ash (IFA). In this paper, the material variation of heavy metal elements of Pb, Zn, Cu, and Fe during the IFA melting process was simulated by HSC 6.0 chemistry software. The effects of melting temperature, alkalinity, atmosphere, chlorine content of raw materials, and an iron bath added to the migration characteristics, and phase transformation of selected heavy metal elements was investigated. The simulation results were also verified by experimental results. The results showed that, with the increase in temperature, the gas phase proportion of Pb, Zn, Cu, and Fe gradually increased. The alkalinity had little effect on the proportion of elements Fe and Cu in the liquid slag (LS) phase and the element Pb in the gas phase, but the increase in alkalinity could inhibit the proportion of element Zn in the gas phase. Zn mainly existed in the gas phase, and the atmosphere had little influence on the distribution of Zn. In reducing atmosphere (RA), elements Fe and Cu, which entered the liquid metal (LM) phase, were promoted, while the volatilization of Pb was restrained, which was conducive to the recovery of heavy metals. The melting process of IFA with water-washing and dechlorination had an inhibitory effect on the volatilization of Zn and Pb, but had little effect on Fe and Cu. The proportion of element Zn in the gas phase reduced from 85.84% to 9.89%. With the iron bath added in the IFA melting process, 98.42% of Cu and 82.28% of Pb entered the LM phase as metal simple substances, and 76.3% of Zn entered the gas phase as Zn (g) and ZnCl2 (g). In the experimental verification, the distribution proportions of the four heavy metals in the gas phase, LS phase, and LM phase were consistent with the simulation results.
ISSN:2075-4701
2075-4701
DOI:10.3390/met12061036