Loading…

Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology

Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H 4 TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene)...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-09, Vol.14 (1), p.5347-5347, Article 5347
Main Authors: Meng, Sha-Sha, Xu, Ming, Guan, Hanxi, Chen, Cailing, Cai, Peiyu, Dong, Bo, Tan, Wen-Shu, Gu, Yu-Hao, Tang, Wen-Qi, Xie, Lan-Gui, Yuan, Shuai, Han, Yu, Kong, Xueqian, Gu, Zhi-Yuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183
cites cdi_FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183
container_end_page 5347
container_issue 1
container_start_page 5347
container_title Nature communications
container_volume 14
creator Meng, Sha-Sha
Xu, Ming
Guan, Hanxi
Chen, Cailing
Cai, Peiyu
Dong, Bo
Tan, Wen-Shu
Gu, Yu-Hao
Tang, Wen-Qi
Xie, Lan-Gui
Yuan, Shuai
Han, Yu
Kong, Xueqian
Gu, Zhi-Yuan
description Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H 4 TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L 1 or L 2 at pocket A or B, the framework flexibility along the b -axis or c -axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by 2 H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials. Metal-organic frameworks (MOFs) with adjustable porosity and tunable functionality have attracted considerable attention, but the directional control of intermolecular and intramolecular motion of TPE-based ligands in the non-interpenetrated flexible MOFs has not yet been studied. Here, the authors report a non-interpenetrated tetraphenylethylene-based MOF with anisotropic flexibility.
doi_str_mv 10.1038/s41467-023-41055-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ffa40cf334d244ffaca0b53ac869f04f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ffa40cf334d244ffaca0b53ac869f04f</doaj_id><sourcerecordid>2859992433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7CyxIZN4PovjleoqlqoVFQkyoaNdePYqUeZeLATYN4eT1MBZYEX9rV9zucr61TVSwpvKPD2bRZUNKoGxmtBQcq6eVIdMxC0porxp3_VR9Vpzhsog2vaCvG8OuKqaQBkc1x9PptCjnOKu2CJH93P0IUxzHuCU09SGEIffLA4hziRMBEkt58u6g6z68nXVH-8uczkR5jvSLYLmeMujnHYv6ieeRyzO31YT6ovlxe35x_q65v3V-dn17WVtJ3rVoDtHOs1IgMJtrFa0Ra1A3C81U5xYOCQoVadQ_AdV9wp5GhVmWnLT6qrldtH3JhdCltMexMxmPuDmAaDaQ52dMZ7LK95zkXPhCg7i9DJgmob7UH4wnq3snZLt3W9ddOccHwEfXwzhTszxO-GglCSUl4Irx8IKX5bXJ7NNmTrxhEnF5dsWNuAACHlofFX_0g3cUlT-auiklprJvgByFaVTTHn5PzvbiiYQwbMmgFTMmDuM2CaYuKrKRfxNLj0B_0f1y_1nLKW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859992433</pqid></control><display><type>article</type><title>Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Meng, Sha-Sha ; Xu, Ming ; Guan, Hanxi ; Chen, Cailing ; Cai, Peiyu ; Dong, Bo ; Tan, Wen-Shu ; Gu, Yu-Hao ; Tang, Wen-Qi ; Xie, Lan-Gui ; Yuan, Shuai ; Han, Yu ; Kong, Xueqian ; Gu, Zhi-Yuan</creator><creatorcontrib>Meng, Sha-Sha ; Xu, Ming ; Guan, Hanxi ; Chen, Cailing ; Cai, Peiyu ; Dong, Bo ; Tan, Wen-Shu ; Gu, Yu-Hao ; Tang, Wen-Qi ; Xie, Lan-Gui ; Yuan, Shuai ; Han, Yu ; Kong, Xueqian ; Gu, Zhi-Yuan</creatorcontrib><description>Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H 4 TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L 1 or L 2 at pocket A or B, the framework flexibility along the b -axis or c -axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by 2 H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials. Metal-organic frameworks (MOFs) with adjustable porosity and tunable functionality have attracted considerable attention, but the directional control of intermolecular and intramolecular motion of TPE-based ligands in the non-interpenetrated flexible MOFs has not yet been studied. Here, the authors report a non-interpenetrated tetraphenylethylene-based MOF with anisotropic flexibility.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-41055-6</identifier><identifier>PMID: 37660056</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 147/143 ; 639/301/357/404 ; 639/638/263/915 ; 639/638/298/921 ; Anisotropy ; Dicarboxylic acids ; Directional control ; Flexibility ; Humanities and Social Sciences ; Ligands ; Metal-organic frameworks ; Motion stability ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Porosity ; Science ; Science (multidisciplinary) ; Separation ; Topology ; Zirconium</subject><ispartof>Nature communications, 2023-09, Vol.14 (1), p.5347-5347, Article 5347</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183</citedby><cites>FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183</cites><orcidid>0000-0001-9577-9704 ; 0000-0002-6245-4759 ; 0000-0003-3329-0481 ; 0000-0003-1462-1118 ; 0000-0002-1901-9073 ; 0000-0003-2598-1354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2859992433/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2859992433?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Meng, Sha-Sha</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Guan, Hanxi</creatorcontrib><creatorcontrib>Chen, Cailing</creatorcontrib><creatorcontrib>Cai, Peiyu</creatorcontrib><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Tan, Wen-Shu</creatorcontrib><creatorcontrib>Gu, Yu-Hao</creatorcontrib><creatorcontrib>Tang, Wen-Qi</creatorcontrib><creatorcontrib>Xie, Lan-Gui</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Kong, Xueqian</creatorcontrib><creatorcontrib>Gu, Zhi-Yuan</creatorcontrib><title>Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H 4 TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L 1 or L 2 at pocket A or B, the framework flexibility along the b -axis or c -axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by 2 H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials. Metal-organic frameworks (MOFs) with adjustable porosity and tunable functionality have attracted considerable attention, but the directional control of intermolecular and intramolecular motion of TPE-based ligands in the non-interpenetrated flexible MOFs has not yet been studied. Here, the authors report a non-interpenetrated tetraphenylethylene-based MOF with anisotropic flexibility.</description><subject>140/131</subject><subject>147/143</subject><subject>639/301/357/404</subject><subject>639/638/263/915</subject><subject>639/638/298/921</subject><subject>Anisotropy</subject><subject>Dicarboxylic acids</subject><subject>Directional control</subject><subject>Flexibility</subject><subject>Humanities and Social Sciences</subject><subject>Ligands</subject><subject>Metal-organic frameworks</subject><subject>Motion stability</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Porosity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Separation</subject><subject>Topology</subject><subject>Zirconium</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7CyxIZN4PovjleoqlqoVFQkyoaNdePYqUeZeLATYN4eT1MBZYEX9rV9zucr61TVSwpvKPD2bRZUNKoGxmtBQcq6eVIdMxC0porxp3_VR9Vpzhsog2vaCvG8OuKqaQBkc1x9PptCjnOKu2CJH93P0IUxzHuCU09SGEIffLA4hziRMBEkt58u6g6z68nXVH-8uczkR5jvSLYLmeMujnHYv6ieeRyzO31YT6ovlxe35x_q65v3V-dn17WVtJ3rVoDtHOs1IgMJtrFa0Ra1A3C81U5xYOCQoVadQ_AdV9wp5GhVmWnLT6qrldtH3JhdCltMexMxmPuDmAaDaQ52dMZ7LK95zkXPhCg7i9DJgmob7UH4wnq3snZLt3W9ddOccHwEfXwzhTszxO-GglCSUl4Irx8IKX5bXJ7NNmTrxhEnF5dsWNuAACHlofFX_0g3cUlT-auiklprJvgByFaVTTHn5PzvbiiYQwbMmgFTMmDuM2CaYuKrKRfxNLj0B_0f1y_1nLKW</recordid><startdate>20230902</startdate><enddate>20230902</enddate><creator>Meng, Sha-Sha</creator><creator>Xu, Ming</creator><creator>Guan, Hanxi</creator><creator>Chen, Cailing</creator><creator>Cai, Peiyu</creator><creator>Dong, Bo</creator><creator>Tan, Wen-Shu</creator><creator>Gu, Yu-Hao</creator><creator>Tang, Wen-Qi</creator><creator>Xie, Lan-Gui</creator><creator>Yuan, Shuai</creator><creator>Han, Yu</creator><creator>Kong, Xueqian</creator><creator>Gu, Zhi-Yuan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9577-9704</orcidid><orcidid>https://orcid.org/0000-0002-6245-4759</orcidid><orcidid>https://orcid.org/0000-0003-3329-0481</orcidid><orcidid>https://orcid.org/0000-0003-1462-1118</orcidid><orcidid>https://orcid.org/0000-0002-1901-9073</orcidid><orcidid>https://orcid.org/0000-0003-2598-1354</orcidid></search><sort><creationdate>20230902</creationdate><title>Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology</title><author>Meng, Sha-Sha ; Xu, Ming ; Guan, Hanxi ; Chen, Cailing ; Cai, Peiyu ; Dong, Bo ; Tan, Wen-Shu ; Gu, Yu-Hao ; Tang, Wen-Qi ; Xie, Lan-Gui ; Yuan, Shuai ; Han, Yu ; Kong, Xueqian ; Gu, Zhi-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>140/131</topic><topic>147/143</topic><topic>639/301/357/404</topic><topic>639/638/263/915</topic><topic>639/638/298/921</topic><topic>Anisotropy</topic><topic>Dicarboxylic acids</topic><topic>Directional control</topic><topic>Flexibility</topic><topic>Humanities and Social Sciences</topic><topic>Ligands</topic><topic>Metal-organic frameworks</topic><topic>Motion stability</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Porosity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Separation</topic><topic>Topology</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Sha-Sha</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Guan, Hanxi</creatorcontrib><creatorcontrib>Chen, Cailing</creatorcontrib><creatorcontrib>Cai, Peiyu</creatorcontrib><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Tan, Wen-Shu</creatorcontrib><creatorcontrib>Gu, Yu-Hao</creatorcontrib><creatorcontrib>Tang, Wen-Qi</creatorcontrib><creatorcontrib>Xie, Lan-Gui</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Kong, Xueqian</creatorcontrib><creatorcontrib>Gu, Zhi-Yuan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Sha-Sha</au><au>Xu, Ming</au><au>Guan, Hanxi</au><au>Chen, Cailing</au><au>Cai, Peiyu</au><au>Dong, Bo</au><au>Tan, Wen-Shu</au><au>Gu, Yu-Hao</au><au>Tang, Wen-Qi</au><au>Xie, Lan-Gui</au><au>Yuan, Shuai</au><au>Han, Yu</au><au>Kong, Xueqian</au><au>Gu, Zhi-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-09-02</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>5347</spage><epage>5347</epage><pages>5347-5347</pages><artnum>5347</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H 4 TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L 1 or L 2 at pocket A or B, the framework flexibility along the b -axis or c -axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by 2 H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials. Metal-organic frameworks (MOFs) with adjustable porosity and tunable functionality have attracted considerable attention, but the directional control of intermolecular and intramolecular motion of TPE-based ligands in the non-interpenetrated flexible MOFs has not yet been studied. Here, the authors report a non-interpenetrated tetraphenylethylene-based MOF with anisotropic flexibility.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37660056</pmid><doi>10.1038/s41467-023-41055-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9577-9704</orcidid><orcidid>https://orcid.org/0000-0002-6245-4759</orcidid><orcidid>https://orcid.org/0000-0003-3329-0481</orcidid><orcidid>https://orcid.org/0000-0003-1462-1118</orcidid><orcidid>https://orcid.org/0000-0002-1901-9073</orcidid><orcidid>https://orcid.org/0000-0003-2598-1354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2023-09, Vol.14 (1), p.5347-5347, Article 5347
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ffa40cf334d244ffaca0b53ac869f04f
source Open Access: PubMed Central; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 140/131
147/143
639/301/357/404
639/638/263/915
639/638/298/921
Anisotropy
Dicarboxylic acids
Directional control
Flexibility
Humanities and Social Sciences
Ligands
Metal-organic frameworks
Motion stability
multidisciplinary
NMR
Nuclear magnetic resonance
Porosity
Science
Science (multidisciplinary)
Separation
Topology
Zirconium
title Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20flexibility%20and%20rigidification%20in%20a%20TPE-based%20Zr-MOFs%20with%20scu%20topology&rft.jtitle=Nature%20communications&rft.au=Meng,%20Sha-Sha&rft.date=2023-09-02&rft.volume=14&rft.issue=1&rft.spage=5347&rft.epage=5347&rft.pages=5347-5347&rft.artnum=5347&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-41055-6&rft_dat=%3Cproquest_doaj_%3E2859992433%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2859992433&rft_id=info:pmid/37660056&rfr_iscdi=true