Loading…
Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology
Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H 4 TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene)...
Saved in:
Published in: | Nature communications 2023-09, Vol.14 (1), p.5347-5347, Article 5347 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183 |
container_end_page | 5347 |
container_issue | 1 |
container_start_page | 5347 |
container_title | Nature communications |
container_volume | 14 |
creator | Meng, Sha-Sha Xu, Ming Guan, Hanxi Chen, Cailing Cai, Peiyu Dong, Bo Tan, Wen-Shu Gu, Yu-Hao Tang, Wen-Qi Xie, Lan-Gui Yuan, Shuai Han, Yu Kong, Xueqian Gu, Zhi-Yuan |
description | Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H
4
TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L
1
or L
2
at pocket A or B, the framework flexibility along the
b
-axis or
c
-axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by
2
H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials.
Metal-organic frameworks (MOFs) with adjustable porosity and tunable functionality have attracted considerable attention, but the directional control of intermolecular and intramolecular motion of TPE-based ligands in the non-interpenetrated flexible MOFs has not yet been studied. Here, the authors report a non-interpenetrated tetraphenylethylene-based MOF with anisotropic flexibility. |
doi_str_mv | 10.1038/s41467-023-41055-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ffa40cf334d244ffaca0b53ac869f04f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ffa40cf334d244ffaca0b53ac869f04f</doaj_id><sourcerecordid>2859992433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7CyxIZN4PovjleoqlqoVFQkyoaNdePYqUeZeLATYN4eT1MBZYEX9rV9zucr61TVSwpvKPD2bRZUNKoGxmtBQcq6eVIdMxC0porxp3_VR9Vpzhsog2vaCvG8OuKqaQBkc1x9PptCjnOKu2CJH93P0IUxzHuCU09SGEIffLA4hziRMBEkt58u6g6z68nXVH-8uczkR5jvSLYLmeMujnHYv6ieeRyzO31YT6ovlxe35x_q65v3V-dn17WVtJ3rVoDtHOs1IgMJtrFa0Ra1A3C81U5xYOCQoVadQ_AdV9wp5GhVmWnLT6qrldtH3JhdCltMexMxmPuDmAaDaQ52dMZ7LK95zkXPhCg7i9DJgmob7UH4wnq3snZLt3W9ddOccHwEfXwzhTszxO-GglCSUl4Irx8IKX5bXJ7NNmTrxhEnF5dsWNuAACHlofFX_0g3cUlT-auiklprJvgByFaVTTHn5PzvbiiYQwbMmgFTMmDuM2CaYuKrKRfxNLj0B_0f1y_1nLKW</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2859992433</pqid></control><display><type>article</type><title>Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Meng, Sha-Sha ; Xu, Ming ; Guan, Hanxi ; Chen, Cailing ; Cai, Peiyu ; Dong, Bo ; Tan, Wen-Shu ; Gu, Yu-Hao ; Tang, Wen-Qi ; Xie, Lan-Gui ; Yuan, Shuai ; Han, Yu ; Kong, Xueqian ; Gu, Zhi-Yuan</creator><creatorcontrib>Meng, Sha-Sha ; Xu, Ming ; Guan, Hanxi ; Chen, Cailing ; Cai, Peiyu ; Dong, Bo ; Tan, Wen-Shu ; Gu, Yu-Hao ; Tang, Wen-Qi ; Xie, Lan-Gui ; Yuan, Shuai ; Han, Yu ; Kong, Xueqian ; Gu, Zhi-Yuan</creatorcontrib><description>Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H
4
TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L
1
or L
2
at pocket A or B, the framework flexibility along the
b
-axis or
c
-axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by
2
H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials.
Metal-organic frameworks (MOFs) with adjustable porosity and tunable functionality have attracted considerable attention, but the directional control of intermolecular and intramolecular motion of TPE-based ligands in the non-interpenetrated flexible MOFs has not yet been studied. Here, the authors report a non-interpenetrated tetraphenylethylene-based MOF with anisotropic flexibility.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-41055-6</identifier><identifier>PMID: 37660056</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/131 ; 147/143 ; 639/301/357/404 ; 639/638/263/915 ; 639/638/298/921 ; Anisotropy ; Dicarboxylic acids ; Directional control ; Flexibility ; Humanities and Social Sciences ; Ligands ; Metal-organic frameworks ; Motion stability ; multidisciplinary ; NMR ; Nuclear magnetic resonance ; Porosity ; Science ; Science (multidisciplinary) ; Separation ; Topology ; Zirconium</subject><ispartof>Nature communications, 2023-09, Vol.14 (1), p.5347-5347, Article 5347</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183</citedby><cites>FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183</cites><orcidid>0000-0001-9577-9704 ; 0000-0002-6245-4759 ; 0000-0003-3329-0481 ; 0000-0003-1462-1118 ; 0000-0002-1901-9073 ; 0000-0003-2598-1354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2859992433/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2859992433?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Meng, Sha-Sha</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Guan, Hanxi</creatorcontrib><creatorcontrib>Chen, Cailing</creatorcontrib><creatorcontrib>Cai, Peiyu</creatorcontrib><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Tan, Wen-Shu</creatorcontrib><creatorcontrib>Gu, Yu-Hao</creatorcontrib><creatorcontrib>Tang, Wen-Qi</creatorcontrib><creatorcontrib>Xie, Lan-Gui</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Kong, Xueqian</creatorcontrib><creatorcontrib>Gu, Zhi-Yuan</creatorcontrib><title>Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H
4
TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L
1
or L
2
at pocket A or B, the framework flexibility along the
b
-axis or
c
-axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by
2
H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials.
Metal-organic frameworks (MOFs) with adjustable porosity and tunable functionality have attracted considerable attention, but the directional control of intermolecular and intramolecular motion of TPE-based ligands in the non-interpenetrated flexible MOFs has not yet been studied. Here, the authors report a non-interpenetrated tetraphenylethylene-based MOF with anisotropic flexibility.</description><subject>140/131</subject><subject>147/143</subject><subject>639/301/357/404</subject><subject>639/638/263/915</subject><subject>639/638/298/921</subject><subject>Anisotropy</subject><subject>Dicarboxylic acids</subject><subject>Directional control</subject><subject>Flexibility</subject><subject>Humanities and Social Sciences</subject><subject>Ligands</subject><subject>Metal-organic frameworks</subject><subject>Motion stability</subject><subject>multidisciplinary</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Porosity</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Separation</subject><subject>Topology</subject><subject>Zirconium</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7CyxIZN4PovjleoqlqoVFQkyoaNdePYqUeZeLATYN4eT1MBZYEX9rV9zucr61TVSwpvKPD2bRZUNKoGxmtBQcq6eVIdMxC0porxp3_VR9Vpzhsog2vaCvG8OuKqaQBkc1x9PptCjnOKu2CJH93P0IUxzHuCU09SGEIffLA4hziRMBEkt58u6g6z68nXVH-8uczkR5jvSLYLmeMujnHYv6ieeRyzO31YT6ovlxe35x_q65v3V-dn17WVtJ3rVoDtHOs1IgMJtrFa0Ra1A3C81U5xYOCQoVadQ_AdV9wp5GhVmWnLT6qrldtH3JhdCltMexMxmPuDmAaDaQ52dMZ7LK95zkXPhCg7i9DJgmob7UH4wnq3snZLt3W9ddOccHwEfXwzhTszxO-GglCSUl4Irx8IKX5bXJ7NNmTrxhEnF5dsWNuAACHlofFX_0g3cUlT-auiklprJvgByFaVTTHn5PzvbiiYQwbMmgFTMmDuM2CaYuKrKRfxNLj0B_0f1y_1nLKW</recordid><startdate>20230902</startdate><enddate>20230902</enddate><creator>Meng, Sha-Sha</creator><creator>Xu, Ming</creator><creator>Guan, Hanxi</creator><creator>Chen, Cailing</creator><creator>Cai, Peiyu</creator><creator>Dong, Bo</creator><creator>Tan, Wen-Shu</creator><creator>Gu, Yu-Hao</creator><creator>Tang, Wen-Qi</creator><creator>Xie, Lan-Gui</creator><creator>Yuan, Shuai</creator><creator>Han, Yu</creator><creator>Kong, Xueqian</creator><creator>Gu, Zhi-Yuan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9577-9704</orcidid><orcidid>https://orcid.org/0000-0002-6245-4759</orcidid><orcidid>https://orcid.org/0000-0003-3329-0481</orcidid><orcidid>https://orcid.org/0000-0003-1462-1118</orcidid><orcidid>https://orcid.org/0000-0002-1901-9073</orcidid><orcidid>https://orcid.org/0000-0003-2598-1354</orcidid></search><sort><creationdate>20230902</creationdate><title>Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology</title><author>Meng, Sha-Sha ; Xu, Ming ; Guan, Hanxi ; Chen, Cailing ; Cai, Peiyu ; Dong, Bo ; Tan, Wen-Shu ; Gu, Yu-Hao ; Tang, Wen-Qi ; Xie, Lan-Gui ; Yuan, Shuai ; Han, Yu ; Kong, Xueqian ; Gu, Zhi-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>140/131</topic><topic>147/143</topic><topic>639/301/357/404</topic><topic>639/638/263/915</topic><topic>639/638/298/921</topic><topic>Anisotropy</topic><topic>Dicarboxylic acids</topic><topic>Directional control</topic><topic>Flexibility</topic><topic>Humanities and Social Sciences</topic><topic>Ligands</topic><topic>Metal-organic frameworks</topic><topic>Motion stability</topic><topic>multidisciplinary</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Porosity</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Separation</topic><topic>Topology</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Sha-Sha</creatorcontrib><creatorcontrib>Xu, Ming</creatorcontrib><creatorcontrib>Guan, Hanxi</creatorcontrib><creatorcontrib>Chen, Cailing</creatorcontrib><creatorcontrib>Cai, Peiyu</creatorcontrib><creatorcontrib>Dong, Bo</creatorcontrib><creatorcontrib>Tan, Wen-Shu</creatorcontrib><creatorcontrib>Gu, Yu-Hao</creatorcontrib><creatorcontrib>Tang, Wen-Qi</creatorcontrib><creatorcontrib>Xie, Lan-Gui</creatorcontrib><creatorcontrib>Yuan, Shuai</creatorcontrib><creatorcontrib>Han, Yu</creatorcontrib><creatorcontrib>Kong, Xueqian</creatorcontrib><creatorcontrib>Gu, Zhi-Yuan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals(OpenAccess)</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Sha-Sha</au><au>Xu, Ming</au><au>Guan, Hanxi</au><au>Chen, Cailing</au><au>Cai, Peiyu</au><au>Dong, Bo</au><au>Tan, Wen-Shu</au><au>Gu, Yu-Hao</au><au>Tang, Wen-Qi</au><au>Xie, Lan-Gui</au><au>Yuan, Shuai</au><au>Han, Yu</au><au>Kong, Xueqian</au><au>Gu, Zhi-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2023-09-02</date><risdate>2023</risdate><volume>14</volume><issue>1</issue><spage>5347</spage><epage>5347</epage><pages>5347-5347</pages><artnum>5347</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Tetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (H
4
TCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets. By individually installing dicarboxylic acid L
1
or L
2
at pocket A or B, the framework flexibility along the
b
-axis or
c
-axis is rigidified, and the intermolecular or intramolecular motions of organic ligands are restricted, respectively. Synergistically, with dual linker installation, the flexibility is completely rigidified with the restriction of ligand motion, resulting in MOFs with enhanced stability and improved separation ability. Furthermore, in situ observation of the flipping of the phenyl ring and its rigidification process is made by
2
H solid-state NMR. The anisotropic rigidification of flexibility in scu Zr-MOFs guides the directional control of ligand motion for designing stimuli-responsive emitting or efficient separation materials.
Metal-organic frameworks (MOFs) with adjustable porosity and tunable functionality have attracted considerable attention, but the directional control of intermolecular and intramolecular motion of TPE-based ligands in the non-interpenetrated flexible MOFs has not yet been studied. Here, the authors report a non-interpenetrated tetraphenylethylene-based MOF with anisotropic flexibility.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37660056</pmid><doi>10.1038/s41467-023-41055-6</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9577-9704</orcidid><orcidid>https://orcid.org/0000-0002-6245-4759</orcidid><orcidid>https://orcid.org/0000-0003-3329-0481</orcidid><orcidid>https://orcid.org/0000-0003-1462-1118</orcidid><orcidid>https://orcid.org/0000-0002-1901-9073</orcidid><orcidid>https://orcid.org/0000-0003-2598-1354</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2023-09, Vol.14 (1), p.5347-5347, Article 5347 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ffa40cf334d244ffaca0b53ac869f04f |
source | Open Access: PubMed Central; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 140/131 147/143 639/301/357/404 639/638/263/915 639/638/298/921 Anisotropy Dicarboxylic acids Directional control Flexibility Humanities and Social Sciences Ligands Metal-organic frameworks Motion stability multidisciplinary NMR Nuclear magnetic resonance Porosity Science Science (multidisciplinary) Separation Topology Zirconium |
title | Anisotropic flexibility and rigidification in a TPE-based Zr-MOFs with scu topology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A15%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20flexibility%20and%20rigidification%20in%20a%20TPE-based%20Zr-MOFs%20with%20scu%20topology&rft.jtitle=Nature%20communications&rft.au=Meng,%20Sha-Sha&rft.date=2023-09-02&rft.volume=14&rft.issue=1&rft.spage=5347&rft.epage=5347&rft.pages=5347-5347&rft.artnum=5347&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-41055-6&rft_dat=%3Cproquest_doaj_%3E2859992433%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-840cbe2d9aa2050c6c9718a9e00e389e73020ea2a97bea0fb373e7a3ac77a3183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2859992433&rft_id=info:pmid/37660056&rfr_iscdi=true |