Loading…
Reconstruction of Sentinel Images for Suspended Particulate Matter Monitoring in Arid Regions
Missing data is a common issue in remote sensing. Data reconstruction through multiple satellite data sources has become one of the most powerful ways to solve this issue. Continuous monitoring of suspended particulate matter (SPM) in arid lakes is vital for water quality solutions. Therefore, this...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-02, Vol.15 (4), p.872 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Missing data is a common issue in remote sensing. Data reconstruction through multiple satellite data sources has become one of the most powerful ways to solve this issue. Continuous monitoring of suspended particulate matter (SPM) in arid lakes is vital for water quality solutions. Therefore, this research aimed to develop and evaluate the performance of two image reconstruction strategies, spatio-temporal fusion reflectance image inversion SPM and SPM spatio-temporal fusion, based on the measured SPM concentration data with Sentinel-2 and Sentinel-3. The results show that (1) ESTARFM (Enhanced Spatio-temporal Adaptive Reflection Fusion Model) performed better than FSDAF (Flexible Spatio-temporal Data Fusion) in the fusion image generation, particularly the red band, followed by the blue, green, and NIR (near-infrared) bands. (2) A single-band linear and non-linear regression model was constructed based on Sentinel-2 and Sentinel-3. Analysis of the accuracy and stability of the model led us to the conclusion that the red band model performs well, is fast to model, and has a wide range of applications (Sentinel-2, Sentinel-3, and fused high-accuracy images). (3) By comparing the two data reconstruction strategies of spatio-temporal fused image inversion SPM and spatio-temporal fused SPM concentration map, we found that the fused SPM concentration map is more effective and more stable when applied to multiple fused images. The findings can provide an important scientific reference value for further expanding the inversion research of other water quality parameters in the future and provide a theoretical basis as well as technical support for the scientific management of Ebinur Lake’s ecology and environment. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15040872 |