Loading…

An Efficient Algorithm for Basic Elementary Matrix Functions with Specified Accuracy and Application

If the matrix function f(At) posses the properties of f(At)=gf(tkA, then the recurrence formula fi−1=gfi,i=N,N−1,⋯,1,f(tA)=f0, can be established. Here, fN=f(AN)=∑j=0majANj,AN=tkNA. This provides an algorithm for computing the matrix function f(At). By specifying the calculation accuracy p, a method...

Full description

Saved in:
Bibliographic Details
Published in:AppliedMath 2024-06, Vol.4 (2), p.690-708
Main Authors: Qin, Huizeng, Lu, Youmin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c194t-4b3dc09efae26b71ea90418c5c797b3eb8ced1d4b142e6b247e240669291de5b3
container_end_page 708
container_issue 2
container_start_page 690
container_title AppliedMath
container_volume 4
creator Qin, Huizeng
Lu, Youmin
description If the matrix function f(At) posses the properties of f(At)=gf(tkA, then the recurrence formula fi−1=gfi,i=N,N−1,⋯,1,f(tA)=f0, can be established. Here, fN=f(AN)=∑j=0majANj,AN=tkNA. This provides an algorithm for computing the matrix function f(At). By specifying the calculation accuracy p, a method is presented to determine m and N in a way that minimizes the time of the above algorithm, thus providing a fast algorithm for f(At). It is important to note that m only depends on the calculation accuracy p and is independent of the matrix A and t. Therefore, f(AN) has a fixed calculation format that is easily computed. On the other hand, N depends not only on A, but also on t. This provides a means to select t such that N is equal to 0, a property of significance. In summary, the algorithm proposed in this article enables users to establish a desired level of accuracy and then utilize it to select the appropriate values for m and N to minimize computation time. This approach ensures that both accuracy and efficiency are addressed concurrently. We develop a general algorithm, then apply it to the exponential, trigonometric, and logarithmic matrix functions, and compare the performance with that of the internal system functions of Mathematica and Pade approximation. In the last section, an example is provided to illustrate the rapid computation of numerical solutions for linear differential equations.
doi_str_mv 10.3390/appliedmath4020037
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ffc63683e400433282eb7b7417c85be4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ffc63683e400433282eb7b7417c85be4</doaj_id><sourcerecordid>oai_doaj_org_article_ffc63683e400433282eb7b7417c85be4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c194t-4b3dc09efae26b71ea90418c5c797b3eb8ced1d4b142e6b247e240669291de5b3</originalsourceid><addsrcrecordid>eNplkN1Kw0AQhRdRsNS-gFf7AtH9SzZ7GUurhYoX6nXYncy2W_JTNinatze1IoJXM3Pm8HE4hNxydielYfd2v68DVo0dtooJxqS-IBORaZkYw8zln_2azPp-xxgTeaqlziekKlq68D5AwHagRb3pYhi2DfVdpA-2D0AXNTbjz8YjfbZDDJ90eWhhCF3b04_RS1_3CMGPAWgBcIgWjtS243FKBfZkvCFX3tY9zn7mlLwvF2_zp2T98riaF-sEuFFDopysgBn0FkXmNEdrmOI5pKCNdhJdDljxSjmuBGZOKI1CsSwzwvAKUyenZHXmVp3dlfsYmjF12dlQfgtd3JQ2DgFqLL2HTGa5RMWYklLkAp12WnENeepQjSxxZkHs-j6i_-VxVp5qL__XLr8AZDd5mg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Efficient Algorithm for Basic Elementary Matrix Functions with Specified Accuracy and Application</title><source>DOAJ Directory of Open Access Journals</source><creator>Qin, Huizeng ; Lu, Youmin</creator><creatorcontrib>Qin, Huizeng ; Lu, Youmin</creatorcontrib><description>If the matrix function f(At) posses the properties of f(At)=gf(tkA, then the recurrence formula fi−1=gfi,i=N,N−1,⋯,1,f(tA)=f0, can be established. Here, fN=f(AN)=∑j=0majANj,AN=tkNA. This provides an algorithm for computing the matrix function f(At). By specifying the calculation accuracy p, a method is presented to determine m and N in a way that minimizes the time of the above algorithm, thus providing a fast algorithm for f(At). It is important to note that m only depends on the calculation accuracy p and is independent of the matrix A and t. Therefore, f(AN) has a fixed calculation format that is easily computed. On the other hand, N depends not only on A, but also on t. This provides a means to select t such that N is equal to 0, a property of significance. In summary, the algorithm proposed in this article enables users to establish a desired level of accuracy and then utilize it to select the appropriate values for m and N to minimize computation time. This approach ensures that both accuracy and efficiency are addressed concurrently. We develop a general algorithm, then apply it to the exponential, trigonometric, and logarithmic matrix functions, and compare the performance with that of the internal system functions of Mathematica and Pade approximation. In the last section, an example is provided to illustrate the rapid computation of numerical solutions for linear differential equations.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath4020037</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>efficient algorithms ; high accuracy ; linear differential equations ; matrix function</subject><ispartof>AppliedMath, 2024-06, Vol.4 (2), p.690-708</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c194t-4b3dc09efae26b71ea90418c5c797b3eb8ced1d4b142e6b247e240669291de5b3</cites><orcidid>0000-0002-9550-0790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Qin, Huizeng</creatorcontrib><creatorcontrib>Lu, Youmin</creatorcontrib><title>An Efficient Algorithm for Basic Elementary Matrix Functions with Specified Accuracy and Application</title><title>AppliedMath</title><description>If the matrix function f(At) posses the properties of f(At)=gf(tkA, then the recurrence formula fi−1=gfi,i=N,N−1,⋯,1,f(tA)=f0, can be established. Here, fN=f(AN)=∑j=0majANj,AN=tkNA. This provides an algorithm for computing the matrix function f(At). By specifying the calculation accuracy p, a method is presented to determine m and N in a way that minimizes the time of the above algorithm, thus providing a fast algorithm for f(At). It is important to note that m only depends on the calculation accuracy p and is independent of the matrix A and t. Therefore, f(AN) has a fixed calculation format that is easily computed. On the other hand, N depends not only on A, but also on t. This provides a means to select t such that N is equal to 0, a property of significance. In summary, the algorithm proposed in this article enables users to establish a desired level of accuracy and then utilize it to select the appropriate values for m and N to minimize computation time. This approach ensures that both accuracy and efficiency are addressed concurrently. We develop a general algorithm, then apply it to the exponential, trigonometric, and logarithmic matrix functions, and compare the performance with that of the internal system functions of Mathematica and Pade approximation. In the last section, an example is provided to illustrate the rapid computation of numerical solutions for linear differential equations.</description><subject>efficient algorithms</subject><subject>high accuracy</subject><subject>linear differential equations</subject><subject>matrix function</subject><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkN1Kw0AQhRdRsNS-gFf7AtH9SzZ7GUurhYoX6nXYncy2W_JTNinatze1IoJXM3Pm8HE4hNxydielYfd2v68DVo0dtooJxqS-IBORaZkYw8zln_2azPp-xxgTeaqlziekKlq68D5AwHagRb3pYhi2DfVdpA-2D0AXNTbjz8YjfbZDDJ90eWhhCF3b04_RS1_3CMGPAWgBcIgWjtS243FKBfZkvCFX3tY9zn7mlLwvF2_zp2T98riaF-sEuFFDopysgBn0FkXmNEdrmOI5pKCNdhJdDljxSjmuBGZOKI1CsSwzwvAKUyenZHXmVp3dlfsYmjF12dlQfgtd3JQ2DgFqLL2HTGa5RMWYklLkAp12WnENeepQjSxxZkHs-j6i_-VxVp5qL__XLr8AZDd5mg</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Qin, Huizeng</creator><creator>Lu, Youmin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9550-0790</orcidid></search><sort><creationdate>20240601</creationdate><title>An Efficient Algorithm for Basic Elementary Matrix Functions with Specified Accuracy and Application</title><author>Qin, Huizeng ; Lu, Youmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c194t-4b3dc09efae26b71ea90418c5c797b3eb8ced1d4b142e6b247e240669291de5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>efficient algorithms</topic><topic>high accuracy</topic><topic>linear differential equations</topic><topic>matrix function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Huizeng</creatorcontrib><creatorcontrib>Lu, Youmin</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Huizeng</au><au>Lu, Youmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Algorithm for Basic Elementary Matrix Functions with Specified Accuracy and Application</atitle><jtitle>AppliedMath</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>4</volume><issue>2</issue><spage>690</spage><epage>708</epage><pages>690-708</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>If the matrix function f(At) posses the properties of f(At)=gf(tkA, then the recurrence formula fi−1=gfi,i=N,N−1,⋯,1,f(tA)=f0, can be established. Here, fN=f(AN)=∑j=0majANj,AN=tkNA. This provides an algorithm for computing the matrix function f(At). By specifying the calculation accuracy p, a method is presented to determine m and N in a way that minimizes the time of the above algorithm, thus providing a fast algorithm for f(At). It is important to note that m only depends on the calculation accuracy p and is independent of the matrix A and t. Therefore, f(AN) has a fixed calculation format that is easily computed. On the other hand, N depends not only on A, but also on t. This provides a means to select t such that N is equal to 0, a property of significance. In summary, the algorithm proposed in this article enables users to establish a desired level of accuracy and then utilize it to select the appropriate values for m and N to minimize computation time. This approach ensures that both accuracy and efficiency are addressed concurrently. We develop a general algorithm, then apply it to the exponential, trigonometric, and logarithmic matrix functions, and compare the performance with that of the internal system functions of Mathematica and Pade approximation. In the last section, an example is provided to illustrate the rapid computation of numerical solutions for linear differential equations.</abstract><pub>MDPI AG</pub><doi>10.3390/appliedmath4020037</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-9550-0790</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-9909
ispartof AppliedMath, 2024-06, Vol.4 (2), p.690-708
issn 2673-9909
2673-9909
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ffc63683e400433282eb7b7417c85be4
source DOAJ Directory of Open Access Journals
subjects efficient algorithms
high accuracy
linear differential equations
matrix function
title An Efficient Algorithm for Basic Elementary Matrix Functions with Specified Accuracy and Application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A57%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Algorithm%20for%20Basic%20Elementary%20Matrix%20Functions%20with%20Specified%20Accuracy%20and%20Application&rft.jtitle=AppliedMath&rft.au=Qin,%20Huizeng&rft.date=2024-06-01&rft.volume=4&rft.issue=2&rft.spage=690&rft.epage=708&rft.pages=690-708&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath4020037&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_ffc63683e400433282eb7b7417c85be4%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c194t-4b3dc09efae26b71ea90418c5c797b3eb8ced1d4b142e6b247e240669291de5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true