Loading…

Solar wind plasma interaction with solar probe plus spacecraft

3-D PIC (Particle In Cell) simulations of spacecraft-plasma interactions in the solar wind context of the Solar Probe Plus mission are presented. The SPIS software is used to simulate a simplified probe in the near-Sun environment (at a distance of 0.044 AU or 9.5 RS from the Sun surface). We begin...

Full description

Saved in:
Bibliographic Details
Published in:Annales geophysicae (1988) 2012-07, Vol.30 (7), p.1075-1092
Main Authors: GUILLEMANT, S, GENOT, V, MATEO-VELEZ, J.-C, ERGUN, R, LOUARN, P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-9fef4603d3d7d62b1e29e5306358df81f75f1a7937f0bdf7657ee22c04db2e4e3
cites cdi_FETCH-LOGICAL-c521t-9fef4603d3d7d62b1e29e5306358df81f75f1a7937f0bdf7657ee22c04db2e4e3
container_end_page 1092
container_issue 7
container_start_page 1075
container_title Annales geophysicae (1988)
container_volume 30
creator GUILLEMANT, S
GENOT, V
MATEO-VELEZ, J.-C
ERGUN, R
LOUARN, P
description 3-D PIC (Particle In Cell) simulations of spacecraft-plasma interactions in the solar wind context of the Solar Probe Plus mission are presented. The SPIS software is used to simulate a simplified probe in the near-Sun environment (at a distance of 0.044 AU or 9.5 RS from the Sun surface). We begin this study with a cross comparison of SPIS with another PIC code, aiming at providing the static potential structure surrounding a spacecraft in a high photoelectron environment. This paper presents then a sensitivity study using generic SPIS capabilities, investigating the role of some physical phenomena and numerical models. It confirms that in the near- sun environment, the Solar Probe Plus spacecraft would rather be negatively charged, despite the high yield of photoemission. This negative potential is explained through the dense sheath of photoelectrons and secondary electrons both emitted with low energies (2–3 eV). Due to this low energy of emission, these particles are not ejected at an infinite distance of the spacecraft and would rather surround it. As involved densities of photoelectrons can reach 106 cm−3 (compared to ambient ions and electrons densities of about 7 × 103 cm−3), those populations affect the surrounding plasma potential generating potential barriers for low energy electrons, leading to high recollection. This charging could interfere with the low energy (up to a few tens of eV) plasma sensors and particle detectors, by biasing the particle distribution functions measured by the instruments. Moreover, if the spacecraft charges to large negative potentials, the problem will be more severe as low energy electrons will not be seen at all. The importance of the modelling requirements in terms of precise prediction of spacecraft potential is also discussed.
doi_str_mv 10.5194/angeo-30-1075-2012
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ffcf9b8133bd483d8797336b7324f036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A481534493</galeid><doaj_id>oai_doaj_org_article_ffcf9b8133bd483d8797336b7324f036</doaj_id><sourcerecordid>A481534493</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-9fef4603d3d7d62b1e29e5306358df81f75f1a7937f0bdf7657ee22c04db2e4e3</originalsourceid><addsrcrecordid>eNpdkU2LFDEYhBtRcFz9A54aRNBDr2_ypvNxEYZF3YUBD-o5pPMxm6GnMyY9iv_e9PSyoOQQKJ4qKqmmeU3guieKfTDT3qcOoSMg-o4CoU-aDWFIO-gFf9psQCnaCS7V8-ZFKQcA4ETJTfPxWxpNbn_HybWn0ZSjaeM0-2zsHNNU9fm-LRfklNPgK3MubTkZ6202YX7ZPAtmLP7Vw33V_Pj86fvNbbf7-uXuZrvrbE_J3KngA-OADp1wnA7EU-V7BI69dEGSIPpAjFAoAgwuCN4L7ym1wNxAPfN41dytuS6Zgz7leDT5j04m6ouQ8l6bPEc7eh2CDWqQBHFwTKKTQglEPgikLADymvV-zbo34z9Rt9udXjQAQamU6hep7LuVra__efZl1sdYrB9HM_l0LpoAMkk5u8S--Q89pHOe6q8sFCjWS46Vul6pvald4xTSXP-6HueP0abJh1j1LZOkR8bUYqCrweZUSvbhsTIBvWyvL9trBL1sr5ftq-ntQxdTrBlDNpON5dFJOSVIaue_MuSszQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030945863</pqid></control><display><type>article</type><title>Solar wind plasma interaction with solar probe plus spacecraft</title><source>Publicly Available Content (ProQuest)</source><creator>GUILLEMANT, S ; GENOT, V ; MATEO-VELEZ, J.-C ; ERGUN, R ; LOUARN, P</creator><creatorcontrib>GUILLEMANT, S ; GENOT, V ; MATEO-VELEZ, J.-C ; ERGUN, R ; LOUARN, P</creatorcontrib><description>3-D PIC (Particle In Cell) simulations of spacecraft-plasma interactions in the solar wind context of the Solar Probe Plus mission are presented. The SPIS software is used to simulate a simplified probe in the near-Sun environment (at a distance of 0.044 AU or 9.5 RS from the Sun surface). We begin this study with a cross comparison of SPIS with another PIC code, aiming at providing the static potential structure surrounding a spacecraft in a high photoelectron environment. This paper presents then a sensitivity study using generic SPIS capabilities, investigating the role of some physical phenomena and numerical models. It confirms that in the near- sun environment, the Solar Probe Plus spacecraft would rather be negatively charged, despite the high yield of photoemission. This negative potential is explained through the dense sheath of photoelectrons and secondary electrons both emitted with low energies (2–3 eV). Due to this low energy of emission, these particles are not ejected at an infinite distance of the spacecraft and would rather surround it. As involved densities of photoelectrons can reach 106 cm−3 (compared to ambient ions and electrons densities of about 7 × 103 cm−3), those populations affect the surrounding plasma potential generating potential barriers for low energy electrons, leading to high recollection. This charging could interfere with the low energy (up to a few tens of eV) plasma sensors and particle detectors, by biasing the particle distribution functions measured by the instruments. Moreover, if the spacecraft charges to large negative potentials, the problem will be more severe as low energy electrons will not be seen at all. The importance of the modelling requirements in terms of precise prediction of spacecraft potential is also discussed.</description><identifier>ISSN: 0992-7689</identifier><identifier>ISSN: 1432-0576</identifier><identifier>EISSN: 1432-0576</identifier><identifier>DOI: 10.5194/angeo-30-1075-2012</identifier><language>eng</language><publisher>Göttingen: Copernicus</publisher><subject>Astronomical and space-research instrumentation ; Astronomy ; Astrophysics ; Comparative analysis ; Earth and Planetary Astrophysics ; Earth, ocean, space ; Exact sciences and technology ; Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations ; Investigations ; Lunar, planetary, and deep-space probes ; Photoionization ; Physics ; Sciences of the Universe ; Spacecraft</subject><ispartof>Annales geophysicae (1988), 2012-07, Vol.30 (7), p.1075-1092</ispartof><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2012</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-9fef4603d3d7d62b1e29e5306358df81f75f1a7937f0bdf7657ee22c04db2e4e3</citedby><cites>FETCH-LOGICAL-c521t-9fef4603d3d7d62b1e29e5306358df81f75f1a7937f0bdf7657ee22c04db2e4e3</cites><orcidid>0000-0002-3096-8579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1030945863/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1030945863?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25731,27901,27902,36989,36990,44566,74869</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26213136$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00722889$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>GUILLEMANT, S</creatorcontrib><creatorcontrib>GENOT, V</creatorcontrib><creatorcontrib>MATEO-VELEZ, J.-C</creatorcontrib><creatorcontrib>ERGUN, R</creatorcontrib><creatorcontrib>LOUARN, P</creatorcontrib><title>Solar wind plasma interaction with solar probe plus spacecraft</title><title>Annales geophysicae (1988)</title><description>3-D PIC (Particle In Cell) simulations of spacecraft-plasma interactions in the solar wind context of the Solar Probe Plus mission are presented. The SPIS software is used to simulate a simplified probe in the near-Sun environment (at a distance of 0.044 AU or 9.5 RS from the Sun surface). We begin this study with a cross comparison of SPIS with another PIC code, aiming at providing the static potential structure surrounding a spacecraft in a high photoelectron environment. This paper presents then a sensitivity study using generic SPIS capabilities, investigating the role of some physical phenomena and numerical models. It confirms that in the near- sun environment, the Solar Probe Plus spacecraft would rather be negatively charged, despite the high yield of photoemission. This negative potential is explained through the dense sheath of photoelectrons and secondary electrons both emitted with low energies (2–3 eV). Due to this low energy of emission, these particles are not ejected at an infinite distance of the spacecraft and would rather surround it. As involved densities of photoelectrons can reach 106 cm−3 (compared to ambient ions and electrons densities of about 7 × 103 cm−3), those populations affect the surrounding plasma potential generating potential barriers for low energy electrons, leading to high recollection. This charging could interfere with the low energy (up to a few tens of eV) plasma sensors and particle detectors, by biasing the particle distribution functions measured by the instruments. Moreover, if the spacecraft charges to large negative potentials, the problem will be more severe as low energy electrons will not be seen at all. The importance of the modelling requirements in terms of precise prediction of spacecraft potential is also discussed.</description><subject>Astronomical and space-research instrumentation</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Comparative analysis</subject><subject>Earth and Planetary Astrophysics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><subject>Investigations</subject><subject>Lunar, planetary, and deep-space probes</subject><subject>Photoionization</subject><subject>Physics</subject><subject>Sciences of the Universe</subject><subject>Spacecraft</subject><issn>0992-7689</issn><issn>1432-0576</issn><issn>1432-0576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkU2LFDEYhBtRcFz9A54aRNBDr2_ypvNxEYZF3YUBD-o5pPMxm6GnMyY9iv_e9PSyoOQQKJ4qKqmmeU3guieKfTDT3qcOoSMg-o4CoU-aDWFIO-gFf9psQCnaCS7V8-ZFKQcA4ETJTfPxWxpNbn_HybWn0ZSjaeM0-2zsHNNU9fm-LRfklNPgK3MubTkZ6202YX7ZPAtmLP7Vw33V_Pj86fvNbbf7-uXuZrvrbE_J3KngA-OADp1wnA7EU-V7BI69dEGSIPpAjFAoAgwuCN4L7ym1wNxAPfN41dytuS6Zgz7leDT5j04m6ouQ8l6bPEc7eh2CDWqQBHFwTKKTQglEPgikLADymvV-zbo34z9Rt9udXjQAQamU6hep7LuVra__efZl1sdYrB9HM_l0LpoAMkk5u8S--Q89pHOe6q8sFCjWS46Vul6pvald4xTSXP-6HueP0abJh1j1LZOkR8bUYqCrweZUSvbhsTIBvWyvL9trBL1sr5ftq-ntQxdTrBlDNpON5dFJOSVIaue_MuSszQ</recordid><startdate>20120724</startdate><enddate>20120724</enddate><creator>GUILLEMANT, S</creator><creator>GENOT, V</creator><creator>MATEO-VELEZ, J.-C</creator><creator>ERGUN, R</creator><creator>LOUARN, P</creator><general>Copernicus</general><general>Copernicus GmbH</general><general>European Geosciences Union</general><general>Copernicus Publications</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3096-8579</orcidid></search><sort><creationdate>20120724</creationdate><title>Solar wind plasma interaction with solar probe plus spacecraft</title><author>GUILLEMANT, S ; GENOT, V ; MATEO-VELEZ, J.-C ; ERGUN, R ; LOUARN, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-9fef4603d3d7d62b1e29e5306358df81f75f1a7937f0bdf7657ee22c04db2e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Astronomical and space-research instrumentation</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Comparative analysis</topic><topic>Earth and Planetary Astrophysics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</topic><topic>Investigations</topic><topic>Lunar, planetary, and deep-space probes</topic><topic>Photoionization</topic><topic>Physics</topic><topic>Sciences of the Universe</topic><topic>Spacecraft</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GUILLEMANT, S</creatorcontrib><creatorcontrib>GENOT, V</creatorcontrib><creatorcontrib>MATEO-VELEZ, J.-C</creatorcontrib><creatorcontrib>ERGUN, R</creatorcontrib><creatorcontrib>LOUARN, P</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Annales geophysicae (1988)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GUILLEMANT, S</au><au>GENOT, V</au><au>MATEO-VELEZ, J.-C</au><au>ERGUN, R</au><au>LOUARN, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar wind plasma interaction with solar probe plus spacecraft</atitle><jtitle>Annales geophysicae (1988)</jtitle><date>2012-07-24</date><risdate>2012</risdate><volume>30</volume><issue>7</issue><spage>1075</spage><epage>1092</epage><pages>1075-1092</pages><issn>0992-7689</issn><issn>1432-0576</issn><eissn>1432-0576</eissn><abstract>3-D PIC (Particle In Cell) simulations of spacecraft-plasma interactions in the solar wind context of the Solar Probe Plus mission are presented. The SPIS software is used to simulate a simplified probe in the near-Sun environment (at a distance of 0.044 AU or 9.5 RS from the Sun surface). We begin this study with a cross comparison of SPIS with another PIC code, aiming at providing the static potential structure surrounding a spacecraft in a high photoelectron environment. This paper presents then a sensitivity study using generic SPIS capabilities, investigating the role of some physical phenomena and numerical models. It confirms that in the near- sun environment, the Solar Probe Plus spacecraft would rather be negatively charged, despite the high yield of photoemission. This negative potential is explained through the dense sheath of photoelectrons and secondary electrons both emitted with low energies (2–3 eV). Due to this low energy of emission, these particles are not ejected at an infinite distance of the spacecraft and would rather surround it. As involved densities of photoelectrons can reach 106 cm−3 (compared to ambient ions and electrons densities of about 7 × 103 cm−3), those populations affect the surrounding plasma potential generating potential barriers for low energy electrons, leading to high recollection. This charging could interfere with the low energy (up to a few tens of eV) plasma sensors and particle detectors, by biasing the particle distribution functions measured by the instruments. Moreover, if the spacecraft charges to large negative potentials, the problem will be more severe as low energy electrons will not be seen at all. The importance of the modelling requirements in terms of precise prediction of spacecraft potential is also discussed.</abstract><cop>Göttingen</cop><pub>Copernicus</pub><doi>10.5194/angeo-30-1075-2012</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3096-8579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0992-7689
ispartof Annales geophysicae (1988), 2012-07, Vol.30 (7), p.1075-1092
issn 0992-7689
1432-0576
1432-0576
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_ffcf9b8133bd483d8797336b7324f036
source Publicly Available Content (ProQuest)
subjects Astronomical and space-research instrumentation
Astronomy
Astrophysics
Comparative analysis
Earth and Planetary Astrophysics
Earth, ocean, space
Exact sciences and technology
Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations
Investigations
Lunar, planetary, and deep-space probes
Photoionization
Physics
Sciences of the Universe
Spacecraft
title Solar wind plasma interaction with solar probe plus spacecraft
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T01%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20wind%20plasma%20interaction%20with%20solar%20probe%20plus%20spacecraft&rft.jtitle=Annales%20geophysicae%20(1988)&rft.au=GUILLEMANT,%20S&rft.date=2012-07-24&rft.volume=30&rft.issue=7&rft.spage=1075&rft.epage=1092&rft.pages=1075-1092&rft.issn=0992-7689&rft.eissn=1432-0576&rft_id=info:doi/10.5194/angeo-30-1075-2012&rft_dat=%3Cgale_doaj_%3EA481534493%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-9fef4603d3d7d62b1e29e5306358df81f75f1a7937f0bdf7657ee22c04db2e4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1030945863&rft_id=info:pmid/&rft_galeid=A481534493&rfr_iscdi=true