Loading…
D-Band 4.6 km 2 × 2 MIMO Photonic-Assisted Terahertz Wireless Communication Utilizing Iterative Pruning Deep Neural Network-Based Nonlinear Equalization
In this paper, we explore the enhancement of a 4.6 km dual-polarization 2 × 2 MIMO D-band photonic-assisted terahertz communication system using iterative pruning-based deep neural network (DNN) nonlinear equalization techniques. The system employs advanced digital signal processing (DSP) methods, i...
Saved in:
Published in: | Photonics 2024-11, Vol.11 (11), p.1009 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2189-446b38c96aa4652450f782c42f3d9b644b9e7f72fb92eb552d0dd289494f2de83 |
container_end_page | |
container_issue | 11 |
container_start_page | 1009 |
container_title | Photonics |
container_volume | 11 |
creator | Lin, Jingwen Xu, Sicong Wang, Qihang Zhang, Jie Ge, Jingtao Wang, Siqi Ou, Zhihang Ma, Yuan Zhou, Wen Yu, Jianjun |
description | In this paper, we explore the enhancement of a 4.6 km dual-polarization 2 × 2 MIMO D-band photonic-assisted terahertz communication system using iterative pruning-based deep neural network (DNN) nonlinear equalization techniques. The system employs advanced digital signal processing (DSP) methods, including down-conversion, resampling, matched filtering, and various equalization algorithms to combat signal distortions. We demonstrate the effectiveness of DNN and iterative pruning techniques in significantly reducing bit error rates (BERs) across a range of symbol rates (10 Gbaud to 30 Gbaud) and polarization states (vertical and horizontal). Before pruning, at 10 GBaud transmission, the lowest BER was 0.0362, and at 30 GBaud transmission, the lowest BER was 0.1826, both of which did not meet the 20% soft-decision forward error correction (SD-FEC) threshold. After pruning, the BER at different transmission rates was reduced to below the hard decision forward error correction (HD-FEC) threshold, indicating a substantial improvement in signal quality. Additionally, the pruning process contributed to a decrease in network complexity, with a maximum reduction of 85.9% for 10 GBaud signals and 63.0% for 30 GBaud signals. These findings indicate the potential of DNN and pruning techniques to enhance the performance and efficiency of terahertz communication systems, providing valuable insights for future high-capacity, long-distance wireless networks. |
doi_str_mv | 10.3390/photonics11111009 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_ffe16cfcfab54aecb846c8cec81f44ca</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A818465329</galeid><doaj_id>oai_doaj_org_article_ffe16cfcfab54aecb846c8cec81f44ca</doaj_id><sourcerecordid>A818465329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2189-446b38c96aa4652450f782c42f3d9b644b9e7f72fb92eb552d0dd289494f2de83</originalsourceid><addsrcrecordid>eNplks1q3DAQx01poSHNA_Qm6NlbfdmWjttN2i7k65DQo5Hl0UYb29pIckrzIiHP0xfrJBtKoSPQiNH__5s5TFF8ZHQhhKafdzchh8nbxJ6DUv2mOOCCyrJuBH_7z_t9cZTSlmJoJlQlD4qn4_KLmXoiFzW5HQknvx_xOlufXZDLV2q5TMmnDD25gmhuIOYH8sNHGCAlsgrjOKPIZB8mcp394B_8tCHrjNrs74FcRvzHyjHAjpzDHM2AKf8M8RZbJ8Seh2nwE5hITu5mg4AX2IfinTNDgqPXfFhcfz25Wn0vTy--rVfL09JypnQpZd0JZXVtjKwrLivqGsWt5E70uqul7DQ0ruGu0xy6quI97XuutNTS8R6UOCzWe24fzLbdRT-a-KsNxrcvhRA3rYnZ2wFa54DV1llnukoasJ2StVUWrGJOSmuQ9WnP2sVwN0PK7TbMccLxW8GE4Fo2VKNqsVdtDEL95EKOxuLpYfQ2TOA81peKIb5CExrY3mBjSCmC-zsmo-3zBrT_bYD4A9UKp5E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3133294709</pqid></control><display><type>article</type><title>D-Band 4.6 km 2 × 2 MIMO Photonic-Assisted Terahertz Wireless Communication Utilizing Iterative Pruning Deep Neural Network-Based Nonlinear Equalization</title><source>Publicly Available Content Database</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lin, Jingwen ; Xu, Sicong ; Wang, Qihang ; Zhang, Jie ; Ge, Jingtao ; Wang, Siqi ; Ou, Zhihang ; Ma, Yuan ; Zhou, Wen ; Yu, Jianjun</creator><creatorcontrib>Lin, Jingwen ; Xu, Sicong ; Wang, Qihang ; Zhang, Jie ; Ge, Jingtao ; Wang, Siqi ; Ou, Zhihang ; Ma, Yuan ; Zhou, Wen ; Yu, Jianjun</creatorcontrib><description>In this paper, we explore the enhancement of a 4.6 km dual-polarization 2 × 2 MIMO D-band photonic-assisted terahertz communication system using iterative pruning-based deep neural network (DNN) nonlinear equalization techniques. The system employs advanced digital signal processing (DSP) methods, including down-conversion, resampling, matched filtering, and various equalization algorithms to combat signal distortions. We demonstrate the effectiveness of DNN and iterative pruning techniques in significantly reducing bit error rates (BERs) across a range of symbol rates (10 Gbaud to 30 Gbaud) and polarization states (vertical and horizontal). Before pruning, at 10 GBaud transmission, the lowest BER was 0.0362, and at 30 GBaud transmission, the lowest BER was 0.1826, both of which did not meet the 20% soft-decision forward error correction (SD-FEC) threshold. After pruning, the BER at different transmission rates was reduced to below the hard decision forward error correction (HD-FEC) threshold, indicating a substantial improvement in signal quality. Additionally, the pruning process contributed to a decrease in network complexity, with a maximum reduction of 85.9% for 10 GBaud signals and 63.0% for 30 GBaud signals. These findings indicate the potential of DNN and pruning techniques to enhance the performance and efficiency of terahertz communication systems, providing valuable insights for future high-capacity, long-distance wireless networks.</description><identifier>ISSN: 2304-6732</identifier><identifier>EISSN: 2304-6732</identifier><identifier>DOI: 10.3390/photonics11111009</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial neural networks ; Bandwidths ; Bit error rate ; Communications systems ; Data transmission ; deep neural network ; Digital signal processing ; Digital signal processors ; Equalization ; Error correction ; Error reduction ; Fiber optics ; Horizontal polarization ; Information processing ; iterative pruning ; Lasers ; MIMO communication ; Neural networks ; photonic-aided terahertz communication system ; Photonics ; Polarization ; Resampling ; Researchers ; Signal distortion ; Signal processing ; Signal quality ; Support vector machines ; Vertical polarization ; Wireless communications ; Wireless networks</subject><ispartof>Photonics, 2024-11, Vol.11 (11), p.1009</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2189-446b38c96aa4652450f782c42f3d9b644b9e7f72fb92eb552d0dd289494f2de83</cites><orcidid>0009-0006-9675-7973 ; 0000-0003-4656-5907 ; 0009-0006-0193-2696</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3133294709/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3133294709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Lin, Jingwen</creatorcontrib><creatorcontrib>Xu, Sicong</creatorcontrib><creatorcontrib>Wang, Qihang</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Ge, Jingtao</creatorcontrib><creatorcontrib>Wang, Siqi</creatorcontrib><creatorcontrib>Ou, Zhihang</creatorcontrib><creatorcontrib>Ma, Yuan</creatorcontrib><creatorcontrib>Zhou, Wen</creatorcontrib><creatorcontrib>Yu, Jianjun</creatorcontrib><title>D-Band 4.6 km 2 × 2 MIMO Photonic-Assisted Terahertz Wireless Communication Utilizing Iterative Pruning Deep Neural Network-Based Nonlinear Equalization</title><title>Photonics</title><description>In this paper, we explore the enhancement of a 4.6 km dual-polarization 2 × 2 MIMO D-band photonic-assisted terahertz communication system using iterative pruning-based deep neural network (DNN) nonlinear equalization techniques. The system employs advanced digital signal processing (DSP) methods, including down-conversion, resampling, matched filtering, and various equalization algorithms to combat signal distortions. We demonstrate the effectiveness of DNN and iterative pruning techniques in significantly reducing bit error rates (BERs) across a range of symbol rates (10 Gbaud to 30 Gbaud) and polarization states (vertical and horizontal). Before pruning, at 10 GBaud transmission, the lowest BER was 0.0362, and at 30 GBaud transmission, the lowest BER was 0.1826, both of which did not meet the 20% soft-decision forward error correction (SD-FEC) threshold. After pruning, the BER at different transmission rates was reduced to below the hard decision forward error correction (HD-FEC) threshold, indicating a substantial improvement in signal quality. Additionally, the pruning process contributed to a decrease in network complexity, with a maximum reduction of 85.9% for 10 GBaud signals and 63.0% for 30 GBaud signals. These findings indicate the potential of DNN and pruning techniques to enhance the performance and efficiency of terahertz communication systems, providing valuable insights for future high-capacity, long-distance wireless networks.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Bandwidths</subject><subject>Bit error rate</subject><subject>Communications systems</subject><subject>Data transmission</subject><subject>deep neural network</subject><subject>Digital signal processing</subject><subject>Digital signal processors</subject><subject>Equalization</subject><subject>Error correction</subject><subject>Error reduction</subject><subject>Fiber optics</subject><subject>Horizontal polarization</subject><subject>Information processing</subject><subject>iterative pruning</subject><subject>Lasers</subject><subject>MIMO communication</subject><subject>Neural networks</subject><subject>photonic-aided terahertz communication system</subject><subject>Photonics</subject><subject>Polarization</subject><subject>Resampling</subject><subject>Researchers</subject><subject>Signal distortion</subject><subject>Signal processing</subject><subject>Signal quality</subject><subject>Support vector machines</subject><subject>Vertical polarization</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>2304-6732</issn><issn>2304-6732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplks1q3DAQx01poSHNA_Qm6NlbfdmWjttN2i7k65DQo5Hl0UYb29pIckrzIiHP0xfrJBtKoSPQiNH__5s5TFF8ZHQhhKafdzchh8nbxJ6DUv2mOOCCyrJuBH_7z_t9cZTSlmJoJlQlD4qn4_KLmXoiFzW5HQknvx_xOlufXZDLV2q5TMmnDD25gmhuIOYH8sNHGCAlsgrjOKPIZB8mcp394B_8tCHrjNrs74FcRvzHyjHAjpzDHM2AKf8M8RZbJ8Seh2nwE5hITu5mg4AX2IfinTNDgqPXfFhcfz25Wn0vTy--rVfL09JypnQpZd0JZXVtjKwrLivqGsWt5E70uqul7DQ0ruGu0xy6quI97XuutNTS8R6UOCzWe24fzLbdRT-a-KsNxrcvhRA3rYnZ2wFa54DV1llnukoasJ2StVUWrGJOSmuQ9WnP2sVwN0PK7TbMccLxW8GE4Fo2VKNqsVdtDEL95EKOxuLpYfQ2TOA81peKIb5CExrY3mBjSCmC-zsmo-3zBrT_bYD4A9UKp5E</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Lin, Jingwen</creator><creator>Xu, Sicong</creator><creator>Wang, Qihang</creator><creator>Zhang, Jie</creator><creator>Ge, Jingtao</creator><creator>Wang, Siqi</creator><creator>Ou, Zhihang</creator><creator>Ma, Yuan</creator><creator>Zhou, Wen</creator><creator>Yu, Jianjun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-9675-7973</orcidid><orcidid>https://orcid.org/0000-0003-4656-5907</orcidid><orcidid>https://orcid.org/0009-0006-0193-2696</orcidid></search><sort><creationdate>20241101</creationdate><title>D-Band 4.6 km 2 × 2 MIMO Photonic-Assisted Terahertz Wireless Communication Utilizing Iterative Pruning Deep Neural Network-Based Nonlinear Equalization</title><author>Lin, Jingwen ; Xu, Sicong ; Wang, Qihang ; Zhang, Jie ; Ge, Jingtao ; Wang, Siqi ; Ou, Zhihang ; Ma, Yuan ; Zhou, Wen ; Yu, Jianjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2189-446b38c96aa4652450f782c42f3d9b644b9e7f72fb92eb552d0dd289494f2de83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Bandwidths</topic><topic>Bit error rate</topic><topic>Communications systems</topic><topic>Data transmission</topic><topic>deep neural network</topic><topic>Digital signal processing</topic><topic>Digital signal processors</topic><topic>Equalization</topic><topic>Error correction</topic><topic>Error reduction</topic><topic>Fiber optics</topic><topic>Horizontal polarization</topic><topic>Information processing</topic><topic>iterative pruning</topic><topic>Lasers</topic><topic>MIMO communication</topic><topic>Neural networks</topic><topic>photonic-aided terahertz communication system</topic><topic>Photonics</topic><topic>Polarization</topic><topic>Resampling</topic><topic>Researchers</topic><topic>Signal distortion</topic><topic>Signal processing</topic><topic>Signal quality</topic><topic>Support vector machines</topic><topic>Vertical polarization</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Jingwen</creatorcontrib><creatorcontrib>Xu, Sicong</creatorcontrib><creatorcontrib>Wang, Qihang</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Ge, Jingtao</creatorcontrib><creatorcontrib>Wang, Siqi</creatorcontrib><creatorcontrib>Ou, Zhihang</creatorcontrib><creatorcontrib>Ma, Yuan</creatorcontrib><creatorcontrib>Zhou, Wen</creatorcontrib><creatorcontrib>Yu, Jianjun</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Jingwen</au><au>Xu, Sicong</au><au>Wang, Qihang</au><au>Zhang, Jie</au><au>Ge, Jingtao</au><au>Wang, Siqi</au><au>Ou, Zhihang</au><au>Ma, Yuan</au><au>Zhou, Wen</au><au>Yu, Jianjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>D-Band 4.6 km 2 × 2 MIMO Photonic-Assisted Terahertz Wireless Communication Utilizing Iterative Pruning Deep Neural Network-Based Nonlinear Equalization</atitle><jtitle>Photonics</jtitle><date>2024-11-01</date><risdate>2024</risdate><volume>11</volume><issue>11</issue><spage>1009</spage><pages>1009-</pages><issn>2304-6732</issn><eissn>2304-6732</eissn><abstract>In this paper, we explore the enhancement of a 4.6 km dual-polarization 2 × 2 MIMO D-band photonic-assisted terahertz communication system using iterative pruning-based deep neural network (DNN) nonlinear equalization techniques. The system employs advanced digital signal processing (DSP) methods, including down-conversion, resampling, matched filtering, and various equalization algorithms to combat signal distortions. We demonstrate the effectiveness of DNN and iterative pruning techniques in significantly reducing bit error rates (BERs) across a range of symbol rates (10 Gbaud to 30 Gbaud) and polarization states (vertical and horizontal). Before pruning, at 10 GBaud transmission, the lowest BER was 0.0362, and at 30 GBaud transmission, the lowest BER was 0.1826, both of which did not meet the 20% soft-decision forward error correction (SD-FEC) threshold. After pruning, the BER at different transmission rates was reduced to below the hard decision forward error correction (HD-FEC) threshold, indicating a substantial improvement in signal quality. Additionally, the pruning process contributed to a decrease in network complexity, with a maximum reduction of 85.9% for 10 GBaud signals and 63.0% for 30 GBaud signals. These findings indicate the potential of DNN and pruning techniques to enhance the performance and efficiency of terahertz communication systems, providing valuable insights for future high-capacity, long-distance wireless networks.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/photonics11111009</doi><orcidid>https://orcid.org/0009-0006-9675-7973</orcidid><orcidid>https://orcid.org/0000-0003-4656-5907</orcidid><orcidid>https://orcid.org/0009-0006-0193-2696</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2304-6732 |
ispartof | Photonics, 2024-11, Vol.11 (11), p.1009 |
issn | 2304-6732 2304-6732 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_ffe16cfcfab54aecb846c8cec81f44ca |
source | Publicly Available Content Database; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial neural networks Bandwidths Bit error rate Communications systems Data transmission deep neural network Digital signal processing Digital signal processors Equalization Error correction Error reduction Fiber optics Horizontal polarization Information processing iterative pruning Lasers MIMO communication Neural networks photonic-aided terahertz communication system Photonics Polarization Resampling Researchers Signal distortion Signal processing Signal quality Support vector machines Vertical polarization Wireless communications Wireless networks |
title | D-Band 4.6 km 2 × 2 MIMO Photonic-Assisted Terahertz Wireless Communication Utilizing Iterative Pruning Deep Neural Network-Based Nonlinear Equalization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=D-Band%204.6%20km%202%20%C3%97%202%20MIMO%20Photonic-Assisted%20Terahertz%20Wireless%20Communication%20Utilizing%20Iterative%20Pruning%20Deep%20Neural%20Network-Based%20Nonlinear%20Equalization&rft.jtitle=Photonics&rft.au=Lin,%20Jingwen&rft.date=2024-11-01&rft.volume=11&rft.issue=11&rft.spage=1009&rft.pages=1009-&rft.issn=2304-6732&rft.eissn=2304-6732&rft_id=info:doi/10.3390/photonics11111009&rft_dat=%3Cgale_doaj_%3EA818465329%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2189-446b38c96aa4652450f782c42f3d9b644b9e7f72fb92eb552d0dd289494f2de83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3133294709&rft_id=info:pmid/&rft_galeid=A818465329&rfr_iscdi=true |