Loading…

Computational Multiqubit Tunnelling in Programmable Quantum Annealers

Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not...

Full description

Saved in:
Bibliographic Details
Main Authors: Boxio,Sergio, Smelyanskiy,Vadim N, Shabani,Alireza, Isakov,Sergei V, Dykman,Mark, Denchev,Vasil S, Amin,Mohammad H, Smirnov,Anatoly Y, Mohseni,Masoud, Neven,Hartmut
Format: Report
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Boxio,Sergio
Smelyanskiy,Vadim N
Shabani,Alireza
Isakov,Sergei V
Dykman,Mark
Denchev,Vasil S
Amin,Mohammad H
Smirnov,Anatoly Y
Mohseni,Masoud
Neven,Hartmut
description Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunneling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. Nature Communications , 7, 01 Jan 0001, 01 Jan 0001, Open Access: Publishers Version. May be placed on public websites; Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
format report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_AD1010959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AD1010959</sourcerecordid><originalsourceid>FETCH-dtic_stinet_AD10109593</originalsourceid><addsrcrecordid>eNrjZHB1zs8tKC1JLMnMz0vMUfAtzSnJLCxNyixRCCnNy0vNycnMS1fIzFMIKMpPL0rMzU1MyklVCCxNzCspzVVwBKpIzEktKuZhYE1LzClO5YXS3Awybq4hzh66KSWZyfHFJZl5qSXxji6GBoYGlqaWxgSkAUT1MNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Computational Multiqubit Tunnelling in Programmable Quantum Annealers</title><source>DTIC Technical Reports</source><creator>Boxio,Sergio ; Smelyanskiy,Vadim N ; Shabani,Alireza ; Isakov,Sergei V ; Dykman,Mark ; Denchev,Vasil S ; Amin,Mohammad H ; Smirnov,Anatoly Y ; Mohseni,Masoud ; Neven,Hartmut</creator><creatorcontrib>Boxio,Sergio ; Smelyanskiy,Vadim N ; Shabani,Alireza ; Isakov,Sergei V ; Dykman,Mark ; Denchev,Vasil S ; Amin,Mohammad H ; Smirnov,Anatoly Y ; Mohseni,Masoud ; Neven,Hartmut ; Google Venice United States</creatorcontrib><description>Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunneling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. Nature Communications , 7, 01 Jan 0001, 01 Jan 0001, Open Access: Publishers Version. May be placed on public websites; Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).</description><language>eng</language><subject>annealing ; Applied physics ; couplings ; energy ; fittings ; freezing ; frequency ; ground state ; optimization ; Physical sciences ; probability ; QUANTUM BITS ; Theoretical physics ; transitions</subject><creationdate>2016</creationdate><rights>Approved For Public Release</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27566,27567</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/AD1010959$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Boxio,Sergio</creatorcontrib><creatorcontrib>Smelyanskiy,Vadim N</creatorcontrib><creatorcontrib>Shabani,Alireza</creatorcontrib><creatorcontrib>Isakov,Sergei V</creatorcontrib><creatorcontrib>Dykman,Mark</creatorcontrib><creatorcontrib>Denchev,Vasil S</creatorcontrib><creatorcontrib>Amin,Mohammad H</creatorcontrib><creatorcontrib>Smirnov,Anatoly Y</creatorcontrib><creatorcontrib>Mohseni,Masoud</creatorcontrib><creatorcontrib>Neven,Hartmut</creatorcontrib><creatorcontrib>Google Venice United States</creatorcontrib><title>Computational Multiqubit Tunnelling in Programmable Quantum Annealers</title><description>Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunneling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. Nature Communications , 7, 01 Jan 0001, 01 Jan 0001, Open Access: Publishers Version. May be placed on public websites; Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).</description><subject>annealing</subject><subject>Applied physics</subject><subject>couplings</subject><subject>energy</subject><subject>fittings</subject><subject>freezing</subject><subject>frequency</subject><subject>ground state</subject><subject>optimization</subject><subject>Physical sciences</subject><subject>probability</subject><subject>QUANTUM BITS</subject><subject>Theoretical physics</subject><subject>transitions</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2016</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZHB1zs8tKC1JLMnMz0vMUfAtzSnJLCxNyixRCCnNy0vNycnMS1fIzFMIKMpPL0rMzU1MyklVCCxNzCspzVVwBKpIzEktKuZhYE1LzClO5YXS3Awybq4hzh66KSWZyfHFJZl5qSXxji6GBoYGlqaWxgSkAUT1MNw</recordid><startdate>20160825</startdate><enddate>20160825</enddate><creator>Boxio,Sergio</creator><creator>Smelyanskiy,Vadim N</creator><creator>Shabani,Alireza</creator><creator>Isakov,Sergei V</creator><creator>Dykman,Mark</creator><creator>Denchev,Vasil S</creator><creator>Amin,Mohammad H</creator><creator>Smirnov,Anatoly Y</creator><creator>Mohseni,Masoud</creator><creator>Neven,Hartmut</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>20160825</creationdate><title>Computational Multiqubit Tunnelling in Programmable Quantum Annealers</title><author>Boxio,Sergio ; Smelyanskiy,Vadim N ; Shabani,Alireza ; Isakov,Sergei V ; Dykman,Mark ; Denchev,Vasil S ; Amin,Mohammad H ; Smirnov,Anatoly Y ; Mohseni,Masoud ; Neven,Hartmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_AD10109593</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2016</creationdate><topic>annealing</topic><topic>Applied physics</topic><topic>couplings</topic><topic>energy</topic><topic>fittings</topic><topic>freezing</topic><topic>frequency</topic><topic>ground state</topic><topic>optimization</topic><topic>Physical sciences</topic><topic>probability</topic><topic>QUANTUM BITS</topic><topic>Theoretical physics</topic><topic>transitions</topic><toplevel>online_resources</toplevel><creatorcontrib>Boxio,Sergio</creatorcontrib><creatorcontrib>Smelyanskiy,Vadim N</creatorcontrib><creatorcontrib>Shabani,Alireza</creatorcontrib><creatorcontrib>Isakov,Sergei V</creatorcontrib><creatorcontrib>Dykman,Mark</creatorcontrib><creatorcontrib>Denchev,Vasil S</creatorcontrib><creatorcontrib>Amin,Mohammad H</creatorcontrib><creatorcontrib>Smirnov,Anatoly Y</creatorcontrib><creatorcontrib>Mohseni,Masoud</creatorcontrib><creatorcontrib>Neven,Hartmut</creatorcontrib><creatorcontrib>Google Venice United States</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boxio,Sergio</au><au>Smelyanskiy,Vadim N</au><au>Shabani,Alireza</au><au>Isakov,Sergei V</au><au>Dykman,Mark</au><au>Denchev,Vasil S</au><au>Amin,Mohammad H</au><au>Smirnov,Anatoly Y</au><au>Mohseni,Masoud</au><au>Neven,Hartmut</au><aucorp>Google Venice United States</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Computational Multiqubit Tunnelling in Programmable Quantum Annealers</btitle><date>2016-08-25</date><risdate>2016</risdate><abstract>Quantum tunnelling is a phenomenon in which a quantum state traverses energy barriers higher than the energy of the state itself. Quantum tunnelling has been hypothesized as an advantageous physical resource for optimization in quantum annealing. However, computational multiqubit tunnelling has not yet been observed, and a theory of co-tunneling under high- and low-frequency noises is lacking. Here we show that 8-qubit tunnelling plays a computational role in a currently available programmable quantum annealer. We devise a probe for tunnelling, a computational primitive where classical paths are trapped in a false minimum. In support of the design of quantum annealers we develop a nonperturbative theory of open quantum dynamics under realistic noise characteristics. This theory accurately predicts the rate of many-body dissipative quantum tunnelling subject to the polaron effect. Furthermore, we experimentally demonstrate that quantum tunnelling outperforms thermal hopping along classical paths for problems with up to 200 qubits containing the computational primitive. Nature Communications , 7, 01 Jan 0001, 01 Jan 0001, Open Access: Publishers Version. May be placed on public websites; Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_AD1010959
source DTIC Technical Reports
subjects annealing
Applied physics
couplings
energy
fittings
freezing
frequency
ground state
optimization
Physical sciences
probability
QUANTUM BITS
Theoretical physics
transitions
title Computational Multiqubit Tunnelling in Programmable Quantum Annealers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Computational%20Multiqubit%20Tunnelling%20in%20Programmable%20Quantum%20Annealers&rft.au=Boxio,Sergio&rft.aucorp=Google%20Venice%20United%20States&rft.date=2016-08-25&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EAD1010959%3C/dtic_1RU%3E%3Cgrp_id%3Ecdi_FETCH-dtic_stinet_AD10109593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true