Loading…
Relative Chebyshev Centers in Normed Linear Spaces. Part II
Let E be a normed linear space, A a bounded set in E, and G in an arbitrary set in E. The relative Chebyshev center of A in G is the set of points in G best approximating A. We have obtained elsewhere general results characterizing the spaces in which the center reduces to a singleton in terms of st...
Saved in:
Main Authors: | , |
---|---|
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Amir,Dan Ziegler,Zvi |
description | Let E be a normed linear space, A a bounded set in E, and G in an arbitrary set in E. The relative Chebyshev center of A in G is the set of points in G best approximating A. We have obtained elsewhere general results characterizing the spaces in which the center reduces to a singleton in terms of structural properties related to uniform and strict convexity. In this paper an analysis of the Chebyshev norm case, which falls outside the scope of the previous analysis, is presented. (Author) |
format | report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA096660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA096660</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA0966603</originalsourceid><addsrcrecordid>eNrjZLAOSs1JLMksS1VwzkhNqizOSC1TcE7NK0ktKlbIzFPwyy_KTU1R8MnMS00sUgguSExOLdZTCEgsKlHw9ORhYE1LzClO5YXS3Awybq4hzh66KSWZyfHFJUBNJfGOLo4GlmZmZgbGBKQBZksrUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Relative Chebyshev Centers in Normed Linear Spaces. Part II</title><source>DTIC Technical Reports</source><creator>Amir,Dan ; Ziegler,Zvi</creator><creatorcontrib>Amir,Dan ; Ziegler,Zvi ; WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER</creatorcontrib><description>Let E be a normed linear space, A a bounded set in E, and G in an arbitrary set in E. The relative Chebyshev center of A in G is the set of points in G best approximating A. We have obtained elsewhere general results characterizing the spaces in which the center reduces to a singleton in terms of structural properties related to uniform and strict convexity. In this paper an analysis of the Chebyshev norm case, which falls outside the scope of the previous analysis, is presented. (Author)</description><language>eng</language><subject>APPROXIMATION(MATHEMATICS) ; CHEBYSHEV APPROXIMATIONS ; Chebyshev centers ; COEFFICIENTS ; CONVEX SETS ; EXPONENTIAL FUNCTIONS ; Extended unisolvence ; RANDOM VARIABLES ; THEOREMS ; Theoretical Mathematics ; VECTOR SPACES</subject><creationdate>1980</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27566,27567</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA096660$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Amir,Dan</creatorcontrib><creatorcontrib>Ziegler,Zvi</creatorcontrib><creatorcontrib>WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER</creatorcontrib><title>Relative Chebyshev Centers in Normed Linear Spaces. Part II</title><description>Let E be a normed linear space, A a bounded set in E, and G in an arbitrary set in E. The relative Chebyshev center of A in G is the set of points in G best approximating A. We have obtained elsewhere general results characterizing the spaces in which the center reduces to a singleton in terms of structural properties related to uniform and strict convexity. In this paper an analysis of the Chebyshev norm case, which falls outside the scope of the previous analysis, is presented. (Author)</description><subject>APPROXIMATION(MATHEMATICS)</subject><subject>CHEBYSHEV APPROXIMATIONS</subject><subject>Chebyshev centers</subject><subject>COEFFICIENTS</subject><subject>CONVEX SETS</subject><subject>EXPONENTIAL FUNCTIONS</subject><subject>Extended unisolvence</subject><subject>RANDOM VARIABLES</subject><subject>THEOREMS</subject><subject>Theoretical Mathematics</subject><subject>VECTOR SPACES</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1980</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZLAOSs1JLMksS1VwzkhNqizOSC1TcE7NK0ktKlbIzFPwyy_KTU1R8MnMS00sUgguSExOLdZTCEgsKlHw9ORhYE1LzClO5YXS3Awybq4hzh66KSWZyfHFJUBNJfGOLo4GlmZmZgbGBKQBZksrUg</recordid><startdate>198011</startdate><enddate>198011</enddate><creator>Amir,Dan</creator><creator>Ziegler,Zvi</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>198011</creationdate><title>Relative Chebyshev Centers in Normed Linear Spaces. Part II</title><author>Amir,Dan ; Ziegler,Zvi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA0966603</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1980</creationdate><topic>APPROXIMATION(MATHEMATICS)</topic><topic>CHEBYSHEV APPROXIMATIONS</topic><topic>Chebyshev centers</topic><topic>COEFFICIENTS</topic><topic>CONVEX SETS</topic><topic>EXPONENTIAL FUNCTIONS</topic><topic>Extended unisolvence</topic><topic>RANDOM VARIABLES</topic><topic>THEOREMS</topic><topic>Theoretical Mathematics</topic><topic>VECTOR SPACES</topic><toplevel>online_resources</toplevel><creatorcontrib>Amir,Dan</creatorcontrib><creatorcontrib>Ziegler,Zvi</creatorcontrib><creatorcontrib>WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amir,Dan</au><au>Ziegler,Zvi</au><aucorp>WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Relative Chebyshev Centers in Normed Linear Spaces. Part II</btitle><date>1980-11</date><risdate>1980</risdate><abstract>Let E be a normed linear space, A a bounded set in E, and G in an arbitrary set in E. The relative Chebyshev center of A in G is the set of points in G best approximating A. We have obtained elsewhere general results characterizing the spaces in which the center reduces to a singleton in terms of structural properties related to uniform and strict convexity. In this paper an analysis of the Chebyshev norm case, which falls outside the scope of the previous analysis, is presented. (Author)</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_ADA096660 |
source | DTIC Technical Reports |
subjects | APPROXIMATION(MATHEMATICS) CHEBYSHEV APPROXIMATIONS Chebyshev centers COEFFICIENTS CONVEX SETS EXPONENTIAL FUNCTIONS Extended unisolvence RANDOM VARIABLES THEOREMS Theoretical Mathematics VECTOR SPACES |
title | Relative Chebyshev Centers in Normed Linear Spaces. Part II |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Relative%20Chebyshev%20Centers%20in%20Normed%20Linear%20Spaces.%20Part%20II&rft.au=Amir,Dan&rft.aucorp=WISCONSIN%20UNIV-MADISON%20MATHEMATICS%20RESEARCH%20CENTER&rft.date=1980-11&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA096660%3C/dtic_1RU%3E%3Cgrp_id%3Ecdi_FETCH-dtic_stinet_ADA0966603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |