Loading…

Relative Chebyshev Centers in Normed Linear Spaces. Part II

Let E be a normed linear space, A a bounded set in E, and G in an arbitrary set in E. The relative Chebyshev center of A in G is the set of points in G best approximating A. We have obtained elsewhere general results characterizing the spaces in which the center reduces to a singleton in terms of st...

Full description

Saved in:
Bibliographic Details
Main Authors: Amir,Dan, Ziegler,Zvi
Format: Report
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Amir,Dan
Ziegler,Zvi
description Let E be a normed linear space, A a bounded set in E, and G in an arbitrary set in E. The relative Chebyshev center of A in G is the set of points in G best approximating A. We have obtained elsewhere general results characterizing the spaces in which the center reduces to a singleton in terms of structural properties related to uniform and strict convexity. In this paper an analysis of the Chebyshev norm case, which falls outside the scope of the previous analysis, is presented. (Author)
format report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA096660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA096660</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA0966603</originalsourceid><addsrcrecordid>eNrjZLAOSs1JLMksS1VwzkhNqizOSC1TcE7NK0ktKlbIzFPwyy_KTU1R8MnMS00sUgguSExOLdZTCEgsKlHw9ORhYE1LzClO5YXS3Awybq4hzh66KSWZyfHFJUBNJfGOLo4GlmZmZgbGBKQBZksrUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Relative Chebyshev Centers in Normed Linear Spaces. Part II</title><source>DTIC Technical Reports</source><creator>Amir,Dan ; Ziegler,Zvi</creator><creatorcontrib>Amir,Dan ; Ziegler,Zvi ; WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER</creatorcontrib><description>Let E be a normed linear space, A a bounded set in E, and G in an arbitrary set in E. The relative Chebyshev center of A in G is the set of points in G best approximating A. We have obtained elsewhere general results characterizing the spaces in which the center reduces to a singleton in terms of structural properties related to uniform and strict convexity. In this paper an analysis of the Chebyshev norm case, which falls outside the scope of the previous analysis, is presented. (Author)</description><language>eng</language><subject>APPROXIMATION(MATHEMATICS) ; CHEBYSHEV APPROXIMATIONS ; Chebyshev centers ; COEFFICIENTS ; CONVEX SETS ; EXPONENTIAL FUNCTIONS ; Extended unisolvence ; RANDOM VARIABLES ; THEOREMS ; Theoretical Mathematics ; VECTOR SPACES</subject><creationdate>1980</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27566,27567</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA096660$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Amir,Dan</creatorcontrib><creatorcontrib>Ziegler,Zvi</creatorcontrib><creatorcontrib>WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER</creatorcontrib><title>Relative Chebyshev Centers in Normed Linear Spaces. Part II</title><description>Let E be a normed linear space, A a bounded set in E, and G in an arbitrary set in E. The relative Chebyshev center of A in G is the set of points in G best approximating A. We have obtained elsewhere general results characterizing the spaces in which the center reduces to a singleton in terms of structural properties related to uniform and strict convexity. In this paper an analysis of the Chebyshev norm case, which falls outside the scope of the previous analysis, is presented. (Author)</description><subject>APPROXIMATION(MATHEMATICS)</subject><subject>CHEBYSHEV APPROXIMATIONS</subject><subject>Chebyshev centers</subject><subject>COEFFICIENTS</subject><subject>CONVEX SETS</subject><subject>EXPONENTIAL FUNCTIONS</subject><subject>Extended unisolvence</subject><subject>RANDOM VARIABLES</subject><subject>THEOREMS</subject><subject>Theoretical Mathematics</subject><subject>VECTOR SPACES</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1980</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZLAOSs1JLMksS1VwzkhNqizOSC1TcE7NK0ktKlbIzFPwyy_KTU1R8MnMS00sUgguSExOLdZTCEgsKlHw9ORhYE1LzClO5YXS3Awybq4hzh66KSWZyfHFJUBNJfGOLo4GlmZmZgbGBKQBZksrUg</recordid><startdate>198011</startdate><enddate>198011</enddate><creator>Amir,Dan</creator><creator>Ziegler,Zvi</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>198011</creationdate><title>Relative Chebyshev Centers in Normed Linear Spaces. Part II</title><author>Amir,Dan ; Ziegler,Zvi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA0966603</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1980</creationdate><topic>APPROXIMATION(MATHEMATICS)</topic><topic>CHEBYSHEV APPROXIMATIONS</topic><topic>Chebyshev centers</topic><topic>COEFFICIENTS</topic><topic>CONVEX SETS</topic><topic>EXPONENTIAL FUNCTIONS</topic><topic>Extended unisolvence</topic><topic>RANDOM VARIABLES</topic><topic>THEOREMS</topic><topic>Theoretical Mathematics</topic><topic>VECTOR SPACES</topic><toplevel>online_resources</toplevel><creatorcontrib>Amir,Dan</creatorcontrib><creatorcontrib>Ziegler,Zvi</creatorcontrib><creatorcontrib>WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amir,Dan</au><au>Ziegler,Zvi</au><aucorp>WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Relative Chebyshev Centers in Normed Linear Spaces. Part II</btitle><date>1980-11</date><risdate>1980</risdate><abstract>Let E be a normed linear space, A a bounded set in E, and G in an arbitrary set in E. The relative Chebyshev center of A in G is the set of points in G best approximating A. We have obtained elsewhere general results characterizing the spaces in which the center reduces to a singleton in terms of structural properties related to uniform and strict convexity. In this paper an analysis of the Chebyshev norm case, which falls outside the scope of the previous analysis, is presented. (Author)</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_ADA096660
source DTIC Technical Reports
subjects APPROXIMATION(MATHEMATICS)
CHEBYSHEV APPROXIMATIONS
Chebyshev centers
COEFFICIENTS
CONVEX SETS
EXPONENTIAL FUNCTIONS
Extended unisolvence
RANDOM VARIABLES
THEOREMS
Theoretical Mathematics
VECTOR SPACES
title Relative Chebyshev Centers in Normed Linear Spaces. Part II
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Relative%20Chebyshev%20Centers%20in%20Normed%20Linear%20Spaces.%20Part%20II&rft.au=Amir,Dan&rft.aucorp=WISCONSIN%20UNIV-MADISON%20MATHEMATICS%20RESEARCH%20CENTER&rft.date=1980-11&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA096660%3C/dtic_1RU%3E%3Cgrp_id%3Ecdi_FETCH-dtic_stinet_ADA0966603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true