Loading…
Fitting a Multiple Regression Function
A statistical problem which finds a wide range of applications is the estimation of a regression function. In this document an estimate is proposed when there are at least two independent regressors. This is not a direct generalization of the Priestley-Chao estimate. Also presented is a consistent e...
Saved in:
Main Authors: | , |
---|---|
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Ahmad,Ibrahim A Lin,Pi-Erh |
description | A statistical problem which finds a wide range of applications is the estimation of a regression function. In this document an estimate is proposed when there are at least two independent regressors. This is not a direct generalization of the Priestley-Chao estimate. Also presented is a consistent estimate for the error variance. With the aid of the variance estimate, an asymptotic confidence interval can be constructed. |
format | report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA133482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA133482</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA1334823</originalsourceid><addsrcrecordid>eNrjZFBzyywpycxLV0hU8C3NKcksyElVCEpNL0otLs7Mz1NwK81LLgEyeBhY0xJzilN5oTQ3g4yba4izh25KSWZyfDHQhNSSeEcXR0NjYxMLI2MC0gDdBSSc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Fitting a Multiple Regression Function</title><source>DTIC Technical Reports</source><creator>Ahmad,Ibrahim A ; Lin,Pi-Erh</creator><creatorcontrib>Ahmad,Ibrahim A ; Lin,Pi-Erh ; FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS</creatorcontrib><description>A statistical problem which finds a wide range of applications is the estimation of a regression function. In this document an estimate is proposed when there are at least two independent regressors. This is not a direct generalization of the Priestley-Chao estimate. Also presented is a consistent estimate for the error variance. With the aid of the variance estimate, an asymptotic confidence interval can be constructed.</description><language>eng</language><subject>Analysis of variance ; Asymptotic normality ; Confidence limits ; Consistency ; Convergence ; Errors ; Estimates ; Fitting functions(Mathematics) ; Kernels ; Probability density functions ; Random variables ; Regression analysis ; Statistics and Probability</subject><creationdate>1982</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA133482$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Ahmad,Ibrahim A</creatorcontrib><creatorcontrib>Lin,Pi-Erh</creatorcontrib><creatorcontrib>FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS</creatorcontrib><title>Fitting a Multiple Regression Function</title><description>A statistical problem which finds a wide range of applications is the estimation of a regression function. In this document an estimate is proposed when there are at least two independent regressors. This is not a direct generalization of the Priestley-Chao estimate. Also presented is a consistent estimate for the error variance. With the aid of the variance estimate, an asymptotic confidence interval can be constructed.</description><subject>Analysis of variance</subject><subject>Asymptotic normality</subject><subject>Confidence limits</subject><subject>Consistency</subject><subject>Convergence</subject><subject>Errors</subject><subject>Estimates</subject><subject>Fitting functions(Mathematics)</subject><subject>Kernels</subject><subject>Probability density functions</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Statistics and Probability</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1982</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZFBzyywpycxLV0hU8C3NKcksyElVCEpNL0otLs7Mz1NwK81LLgEyeBhY0xJzilN5oTQ3g4yba4izh25KSWZyfDHQhNSSeEcXR0NjYxMLI2MC0gDdBSSc</recordid><startdate>198212</startdate><enddate>198212</enddate><creator>Ahmad,Ibrahim A</creator><creator>Lin,Pi-Erh</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>198212</creationdate><title>Fitting a Multiple Regression Function</title><author>Ahmad,Ibrahim A ; Lin,Pi-Erh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA1334823</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Analysis of variance</topic><topic>Asymptotic normality</topic><topic>Confidence limits</topic><topic>Consistency</topic><topic>Convergence</topic><topic>Errors</topic><topic>Estimates</topic><topic>Fitting functions(Mathematics)</topic><topic>Kernels</topic><topic>Probability density functions</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Statistics and Probability</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmad,Ibrahim A</creatorcontrib><creatorcontrib>Lin,Pi-Erh</creatorcontrib><creatorcontrib>FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ahmad,Ibrahim A</au><au>Lin,Pi-Erh</au><aucorp>FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Fitting a Multiple Regression Function</btitle><date>1982-12</date><risdate>1982</risdate><abstract>A statistical problem which finds a wide range of applications is the estimation of a regression function. In this document an estimate is proposed when there are at least two independent regressors. This is not a direct generalization of the Priestley-Chao estimate. Also presented is a consistent estimate for the error variance. With the aid of the variance estimate, an asymptotic confidence interval can be constructed.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_ADA133482 |
source | DTIC Technical Reports |
subjects | Analysis of variance Asymptotic normality Confidence limits Consistency Convergence Errors Estimates Fitting functions(Mathematics) Kernels Probability density functions Random variables Regression analysis Statistics and Probability |
title | Fitting a Multiple Regression Function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A04%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Fitting%20a%20Multiple%20Regression%20Function&rft.au=Ahmad,Ibrahim%20A&rft.aucorp=FLORIDA%20STATE%20UNIV%20TALLAHASSEE%20DEPT%20OF%20STATISTICS&rft.date=1982-12&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA133482%3C/dtic_1RU%3E%3Cgrp_id%3Ecdi_FETCH-dtic_stinet_ADA1334823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |