Loading…
Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision
The representation of a nuclear space valued square integrable martingale by means of another nuclear space valued sqare integrable martingale is given in terms of stochastic integrals of operator valued processes. The construction of the stochastic integral goes through that of operator valued proc...
Saved in:
Main Authors: | , |
---|---|
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Korezlioglu,H Martias,C |
description | The representation of a nuclear space valued square integrable martingale by means of another nuclear space valued sqare integrable martingale is given in terms of stochastic integrals of operator valued processes. The construction of the stochastic integral goes through that of operator valued processes on Hilbert spaces. A new approach is given for the Hilbertian case, so that only the integration of Hilbert-Schmidt operator valued processes is needed to represent square integrable martingales. (Author)
Supersedes AD-A158 878. |
format | report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA168501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA168501</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA1685013</originalsourceid><addsrcrecordid>eNrjZEgLLslPzkgsLslMVvDMK0lNL0osyczPU0jLL1LwL0gF8oCMsMSc0tQUhYCi_OTU4uLUYgWgAo_MnKTUohKF4IJEoKBCYl4KSNSvNDknNbEIKqqnEJRallkMNI-HgTUtMac4lRdKczPIuLmGOHvopgAtjgfanpdaEu_o4mhoZmFqYGhMQBoAwcc8Ew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision</title><source>DTIC Technical Reports</source><creator>Korezlioglu,H ; Martias,C</creator><creatorcontrib>Korezlioglu,H ; Martias,C ; NORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR STOCHASTIC PROCESSES</creatorcontrib><description>The representation of a nuclear space valued square integrable martingale by means of another nuclear space valued sqare integrable martingale is given in terms of stochastic integrals of operator valued processes. The construction of the stochastic integral goes through that of operator valued processes on Hilbert spaces. A new approach is given for the Hilbertian case, so that only the integration of Hilbert-Schmidt operator valued processes is needed to represent square integrable martingales. (Author)
Supersedes AD-A158 878.</description><language>eng</language><subject>HILBERT SPACE ; INTEGRALS ; INTEGRATION ; Martingales ; Nuclear spaces ; OPERATORS(MATHEMATICS) ; PE61102F ; Statistics and Probability ; STOCHASTIC PROCESSES ; WUAFOSR2304A5</subject><creationdate>1986</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA168501$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Korezlioglu,H</creatorcontrib><creatorcontrib>Martias,C</creatorcontrib><creatorcontrib>NORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR STOCHASTIC PROCESSES</creatorcontrib><title>Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision</title><description>The representation of a nuclear space valued square integrable martingale by means of another nuclear space valued sqare integrable martingale is given in terms of stochastic integrals of operator valued processes. The construction of the stochastic integral goes through that of operator valued processes on Hilbert spaces. A new approach is given for the Hilbertian case, so that only the integration of Hilbert-Schmidt operator valued processes is needed to represent square integrable martingales. (Author)
Supersedes AD-A158 878.</description><subject>HILBERT SPACE</subject><subject>INTEGRALS</subject><subject>INTEGRATION</subject><subject>Martingales</subject><subject>Nuclear spaces</subject><subject>OPERATORS(MATHEMATICS)</subject><subject>PE61102F</subject><subject>Statistics and Probability</subject><subject>STOCHASTIC PROCESSES</subject><subject>WUAFOSR2304A5</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1986</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZEgLLslPzkgsLslMVvDMK0lNL0osyczPU0jLL1LwL0gF8oCMsMSc0tQUhYCi_OTU4uLUYgWgAo_MnKTUohKF4IJEoKBCYl4KSNSvNDknNbEIKqqnEJRallkMNI-HgTUtMac4lRdKczPIuLmGOHvopgAtjgfanpdaEu_o4mhoZmFqYGhMQBoAwcc8Ew</recordid><startdate>198603</startdate><enddate>198603</enddate><creator>Korezlioglu,H</creator><creator>Martias,C</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>198603</creationdate><title>Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision</title><author>Korezlioglu,H ; Martias,C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA1685013</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1986</creationdate><topic>HILBERT SPACE</topic><topic>INTEGRALS</topic><topic>INTEGRATION</topic><topic>Martingales</topic><topic>Nuclear spaces</topic><topic>OPERATORS(MATHEMATICS)</topic><topic>PE61102F</topic><topic>Statistics and Probability</topic><topic>STOCHASTIC PROCESSES</topic><topic>WUAFOSR2304A5</topic><toplevel>online_resources</toplevel><creatorcontrib>Korezlioglu,H</creatorcontrib><creatorcontrib>Martias,C</creatorcontrib><creatorcontrib>NORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR STOCHASTIC PROCESSES</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Korezlioglu,H</au><au>Martias,C</au><aucorp>NORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR STOCHASTIC PROCESSES</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision</btitle><date>1986-03</date><risdate>1986</risdate><abstract>The representation of a nuclear space valued square integrable martingale by means of another nuclear space valued sqare integrable martingale is given in terms of stochastic integrals of operator valued processes. The construction of the stochastic integral goes through that of operator valued processes on Hilbert spaces. A new approach is given for the Hilbertian case, so that only the integration of Hilbert-Schmidt operator valued processes is needed to represent square integrable martingales. (Author)
Supersedes AD-A158 878.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_ADA168501 |
source | DTIC Technical Reports |
subjects | HILBERT SPACE INTEGRALS INTEGRATION Martingales Nuclear spaces OPERATORS(MATHEMATICS) PE61102F Statistics and Probability STOCHASTIC PROCESSES WUAFOSR2304A5 |
title | Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Stochastic%20Integration%20for%20Operator%20Valued%20Processes%20on%20Hilbert%20Spaces%20and%20on%20Nuclear%20Spaces.%20Revision&rft.au=Korezlioglu,H&rft.aucorp=NORTH%20CAROLINA%20UNIV%20AT%20CHAPEL%20HILL%20CENTER%20FOR%20STOCHASTIC%20PROCESSES&rft.date=1986-03&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA168501%3C/dtic_1RU%3E%3Cgrp_id%3Ecdi_FETCH-dtic_stinet_ADA1685013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |