Loading…

Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision

The representation of a nuclear space valued square integrable martingale by means of another nuclear space valued sqare integrable martingale is given in terms of stochastic integrals of operator valued processes. The construction of the stochastic integral goes through that of operator valued proc...

Full description

Saved in:
Bibliographic Details
Main Authors: Korezlioglu,H, Martias,C
Format: Report
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Korezlioglu,H
Martias,C
description The representation of a nuclear space valued square integrable martingale by means of another nuclear space valued sqare integrable martingale is given in terms of stochastic integrals of operator valued processes. The construction of the stochastic integral goes through that of operator valued processes on Hilbert spaces. A new approach is given for the Hilbertian case, so that only the integration of Hilbert-Schmidt operator valued processes is needed to represent square integrable martingales. (Author) Supersedes AD-A158 878.
format report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA168501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA168501</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA1685013</originalsourceid><addsrcrecordid>eNrjZEgLLslPzkgsLslMVvDMK0lNL0osyczPU0jLL1LwL0gF8oCMsMSc0tQUhYCi_OTU4uLUYgWgAo_MnKTUohKF4IJEoKBCYl4KSNSvNDknNbEIKqqnEJRallkMNI-HgTUtMac4lRdKczPIuLmGOHvopgAtjgfanpdaEu_o4mhoZmFqYGhMQBoAwcc8Ew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision</title><source>DTIC Technical Reports</source><creator>Korezlioglu,H ; Martias,C</creator><creatorcontrib>Korezlioglu,H ; Martias,C ; NORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR STOCHASTIC PROCESSES</creatorcontrib><description>The representation of a nuclear space valued square integrable martingale by means of another nuclear space valued sqare integrable martingale is given in terms of stochastic integrals of operator valued processes. The construction of the stochastic integral goes through that of operator valued processes on Hilbert spaces. A new approach is given for the Hilbertian case, so that only the integration of Hilbert-Schmidt operator valued processes is needed to represent square integrable martingales. (Author) Supersedes AD-A158 878.</description><language>eng</language><subject>HILBERT SPACE ; INTEGRALS ; INTEGRATION ; Martingales ; Nuclear spaces ; OPERATORS(MATHEMATICS) ; PE61102F ; Statistics and Probability ; STOCHASTIC PROCESSES ; WUAFOSR2304A5</subject><creationdate>1986</creationdate><rights>APPROVED FOR PUBLIC RELEASE</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA168501$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Korezlioglu,H</creatorcontrib><creatorcontrib>Martias,C</creatorcontrib><creatorcontrib>NORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR STOCHASTIC PROCESSES</creatorcontrib><title>Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision</title><description>The representation of a nuclear space valued square integrable martingale by means of another nuclear space valued sqare integrable martingale is given in terms of stochastic integrals of operator valued processes. The construction of the stochastic integral goes through that of operator valued processes on Hilbert spaces. A new approach is given for the Hilbertian case, so that only the integration of Hilbert-Schmidt operator valued processes is needed to represent square integrable martingales. (Author) Supersedes AD-A158 878.</description><subject>HILBERT SPACE</subject><subject>INTEGRALS</subject><subject>INTEGRATION</subject><subject>Martingales</subject><subject>Nuclear spaces</subject><subject>OPERATORS(MATHEMATICS)</subject><subject>PE61102F</subject><subject>Statistics and Probability</subject><subject>STOCHASTIC PROCESSES</subject><subject>WUAFOSR2304A5</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1986</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZEgLLslPzkgsLslMVvDMK0lNL0osyczPU0jLL1LwL0gF8oCMsMSc0tQUhYCi_OTU4uLUYgWgAo_MnKTUohKF4IJEoKBCYl4KSNSvNDknNbEIKqqnEJRallkMNI-HgTUtMac4lRdKczPIuLmGOHvopgAtjgfanpdaEu_o4mhoZmFqYGhMQBoAwcc8Ew</recordid><startdate>198603</startdate><enddate>198603</enddate><creator>Korezlioglu,H</creator><creator>Martias,C</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>198603</creationdate><title>Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision</title><author>Korezlioglu,H ; Martias,C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA1685013</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1986</creationdate><topic>HILBERT SPACE</topic><topic>INTEGRALS</topic><topic>INTEGRATION</topic><topic>Martingales</topic><topic>Nuclear spaces</topic><topic>OPERATORS(MATHEMATICS)</topic><topic>PE61102F</topic><topic>Statistics and Probability</topic><topic>STOCHASTIC PROCESSES</topic><topic>WUAFOSR2304A5</topic><toplevel>online_resources</toplevel><creatorcontrib>Korezlioglu,H</creatorcontrib><creatorcontrib>Martias,C</creatorcontrib><creatorcontrib>NORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR STOCHASTIC PROCESSES</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Korezlioglu,H</au><au>Martias,C</au><aucorp>NORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR STOCHASTIC PROCESSES</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision</btitle><date>1986-03</date><risdate>1986</risdate><abstract>The representation of a nuclear space valued square integrable martingale by means of another nuclear space valued sqare integrable martingale is given in terms of stochastic integrals of operator valued processes. The construction of the stochastic integral goes through that of operator valued processes on Hilbert spaces. A new approach is given for the Hilbertian case, so that only the integration of Hilbert-Schmidt operator valued processes is needed to represent square integrable martingales. (Author) Supersedes AD-A158 878.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_ADA168501
source DTIC Technical Reports
subjects HILBERT SPACE
INTEGRALS
INTEGRATION
Martingales
Nuclear spaces
OPERATORS(MATHEMATICS)
PE61102F
Statistics and Probability
STOCHASTIC PROCESSES
WUAFOSR2304A5
title Stochastic Integration for Operator Valued Processes on Hilbert Spaces and on Nuclear Spaces. Revision
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A34%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Stochastic%20Integration%20for%20Operator%20Valued%20Processes%20on%20Hilbert%20Spaces%20and%20on%20Nuclear%20Spaces.%20Revision&rft.au=Korezlioglu,H&rft.aucorp=NORTH%20CAROLINA%20UNIV%20AT%20CHAPEL%20HILL%20CENTER%20FOR%20STOCHASTIC%20PROCESSES&rft.date=1986-03&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA168501%3C/dtic_1RU%3E%3Cgrp_id%3Ecdi_FETCH-dtic_stinet_ADA1685013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true