Loading…
Model of Predictive Control of a Direct-Fire Projectile Equipped With Canards
Launch uncertainties in uncontrolled direct-fire projectiles can lead to significant impact point dispersion, even at relatively short range. A model predictive control scheme for direct-fire projectiles is investigated to reduce impact point dispersion. The control law depends on projectile linear...
Saved in:
Main Authors: | , |
---|---|
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Launch uncertainties in uncontrolled direct-fire projectiles can lead to significant impact point dispersion, even at relatively short range. A model predictive control scheme for direct-fire projectiles is investigated to reduce impact point dispersion. The control law depends on projectile linear theory to create an approximate linear model of the projectile and quickly predict states into the future. Control inputs are based on minimization of the error between predicted projectile states and a desired trajectory leading to the target. Through simulation, the control law is shown to work well in reducing projectile impact point dispersion. Parametric trade studies on an example projectile configuration are reported that detail the effect of prediction horizon length, gain settings, model update interval, and model step size.
The original document contains color images. |
---|