Loading…
Multimodal Olfactory Scence Analysis
This describes our effort for understanding biological and artifical olfactory systems along three multi-disciplinary fronts: 1. Experimental characterization of biological olfactory systems in their speed and adaptiveness to novel odors; 2. Mathematical modeling of the effective of various olfactor...
Saved in:
Main Authors: | , , |
---|---|
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Gelperin, Alan Shraiman, Boris Lee, Daniel D |
description | This describes our effort for understanding biological and artifical olfactory systems along three multi-disciplinary fronts: 1. Experimental characterization of biological olfactory systems in their speed and adaptiveness to novel odors; 2. Mathematical modeling of the effective of various olfactory search strategies; 3. Machine learning algorithms for analyzing olfactory sensor data.
The original document contains color images. |
format | report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA455446</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA455446</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA4554463</originalsourceid><addsrcrecordid>eNrjZFDxLc0pyczNT0nMUfDPSUtMLskvqlQITk7NS05VcMxLzKkszizmYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4ujiampiYmZsYEpAGU4SP_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Multimodal Olfactory Scence Analysis</title><source>DTIC Technical Reports</source><creator>Gelperin, Alan ; Shraiman, Boris ; Lee, Daniel D</creator><creatorcontrib>Gelperin, Alan ; Shraiman, Boris ; Lee, Daniel D ; PENNSYLVANIA UNIV PHILADELPHIA</creatorcontrib><description>This describes our effort for understanding biological and artifical olfactory systems along three multi-disciplinary fronts: 1. Experimental characterization of biological olfactory systems in their speed and adaptiveness to novel odors; 2. Mathematical modeling of the effective of various olfactory search strategies; 3. Machine learning algorithms for analyzing olfactory sensor data.
The original document contains color images.</description><language>eng</language><subject>ALGORITHMS ; Anatomy and Physiology ; DETECTORS ; LEARNING MACHINES ; MATHEMATICAL MODELS ; Radiofrequency Wave Propagation ; SIGNAL TO NOISE RATIO ; SPARSE LEAST MEAN SQUARE SOLUTION ; STRATEGY</subject><creationdate>2006</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,776,881,27546,27547</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA455446$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Gelperin, Alan</creatorcontrib><creatorcontrib>Shraiman, Boris</creatorcontrib><creatorcontrib>Lee, Daniel D</creatorcontrib><creatorcontrib>PENNSYLVANIA UNIV PHILADELPHIA</creatorcontrib><title>Multimodal Olfactory Scence Analysis</title><description>This describes our effort for understanding biological and artifical olfactory systems along three multi-disciplinary fronts: 1. Experimental characterization of biological olfactory systems in their speed and adaptiveness to novel odors; 2. Mathematical modeling of the effective of various olfactory search strategies; 3. Machine learning algorithms for analyzing olfactory sensor data.
The original document contains color images.</description><subject>ALGORITHMS</subject><subject>Anatomy and Physiology</subject><subject>DETECTORS</subject><subject>LEARNING MACHINES</subject><subject>MATHEMATICAL MODELS</subject><subject>Radiofrequency Wave Propagation</subject><subject>SIGNAL TO NOISE RATIO</subject><subject>SPARSE LEAST MEAN SQUARE SOLUTION</subject><subject>STRATEGY</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2006</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNrjZFDxLc0pyczNT0nMUfDPSUtMLskvqlQITk7NS05VcMxLzKkszizmYWBNS8wpTuWF0twMMm6uIc4euiklmcnxxSWZeakl8Y4ujiampiYmZsYEpAGU4SP_</recordid><startdate>20060725</startdate><enddate>20060725</enddate><creator>Gelperin, Alan</creator><creator>Shraiman, Boris</creator><creator>Lee, Daniel D</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>20060725</creationdate><title>Multimodal Olfactory Scence Analysis</title><author>Gelperin, Alan ; Shraiman, Boris ; Lee, Daniel D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA4554463</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2006</creationdate><topic>ALGORITHMS</topic><topic>Anatomy and Physiology</topic><topic>DETECTORS</topic><topic>LEARNING MACHINES</topic><topic>MATHEMATICAL MODELS</topic><topic>Radiofrequency Wave Propagation</topic><topic>SIGNAL TO NOISE RATIO</topic><topic>SPARSE LEAST MEAN SQUARE SOLUTION</topic><topic>STRATEGY</topic><toplevel>online_resources</toplevel><creatorcontrib>Gelperin, Alan</creatorcontrib><creatorcontrib>Shraiman, Boris</creatorcontrib><creatorcontrib>Lee, Daniel D</creatorcontrib><creatorcontrib>PENNSYLVANIA UNIV PHILADELPHIA</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gelperin, Alan</au><au>Shraiman, Boris</au><au>Lee, Daniel D</au><aucorp>PENNSYLVANIA UNIV PHILADELPHIA</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Multimodal Olfactory Scence Analysis</btitle><date>2006-07-25</date><risdate>2006</risdate><abstract>This describes our effort for understanding biological and artifical olfactory systems along three multi-disciplinary fronts: 1. Experimental characterization of biological olfactory systems in their speed and adaptiveness to novel odors; 2. Mathematical modeling of the effective of various olfactory search strategies; 3. Machine learning algorithms for analyzing olfactory sensor data.
The original document contains color images.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_ADA455446 |
source | DTIC Technical Reports |
subjects | ALGORITHMS Anatomy and Physiology DETECTORS LEARNING MACHINES MATHEMATICAL MODELS Radiofrequency Wave Propagation SIGNAL TO NOISE RATIO SPARSE LEAST MEAN SQUARE SOLUTION STRATEGY |
title | Multimodal Olfactory Scence Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Multimodal%20Olfactory%20Scence%20Analysis&rft.au=Gelperin,%20Alan&rft.aucorp=PENNSYLVANIA%20UNIV%20PHILADELPHIA&rft.date=2006-07-25&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA455446%3C/dtic_1RU%3E%3Cgrp_id%3Ecdi_FETCH-dtic_stinet_ADA4554463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |