Loading…
A Finite Element Approach for Multidimensional Inverse Heat Conduction
An efficient technique for mapping thermal boundary conditions is described and demonstrated. The technique is based on a piece-wise polynomial approximation where the Laplacian derivatives in space are constrained using the heat equation. Measured values for the Laplacian are obtained from temperat...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | |
container_volume | |
creator | Coy, Edward Bergkoetter, Matthew Danczyk, Stephen Felix, Edgar |
description | An efficient technique for mapping thermal boundary conditions is described and demonstrated. The technique is based on a piece-wise polynomial approximation where the Laplacian derivatives in space are constrained using the heat equation. Measured values for the Laplacian are obtained from temperature rate measurements from sensors embedded within a body. The technique has been implemented in a digital signal processor and is able to provide real-time data on thermal boundary conditions over a surface. The technique is adaptable to complex geometry. In this paper the technique will be applied to a study of the injector-wall interactions in a laboratory scale liquid rocket engine.
Presented at the AIAA Aerospace Sciences Meeting held in Nashville, TN on 4-9 January 2012. |
format | report |
fullrecord | <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA546652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA546652</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA5466523</originalsourceid><addsrcrecordid>eNqFybEOgjAQANAuDkT9A4b7ARcE9gZpcGBzJ017xEvqlbSH3w8DO9MbXqGMBkNMgtAH_CEL6GVJ0bovzDHBuAYhT3tkimwDvPmPKSMMaAW6yH51ss9NXWYbMt4Pr6o0_acbHl7ITVmIUSb90k3dtk31POkN6sswUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>A Finite Element Approach for Multidimensional Inverse Heat Conduction</title><source>DTIC Technical Reports</source><creator>Coy, Edward ; Bergkoetter, Matthew ; Danczyk, Stephen ; Felix, Edgar</creator><creatorcontrib>Coy, Edward ; Bergkoetter, Matthew ; Danczyk, Stephen ; Felix, Edgar ; AIR FORCE RESEARCH LAB EDWARDS AFB CA PROPULSION DIRECTORATE</creatorcontrib><description>An efficient technique for mapping thermal boundary conditions is described and demonstrated. The technique is based on a piece-wise polynomial approximation where the Laplacian derivatives in space are constrained using the heat equation. Measured values for the Laplacian are obtained from temperature rate measurements from sensors embedded within a body. The technique has been implemented in a digital signal processor and is able to provide real-time data on thermal boundary conditions over a surface. The technique is adaptable to complex geometry. In this paper the technique will be applied to a study of the injector-wall interactions in a laboratory scale liquid rocket engine.
Presented at the AIAA Aerospace Sciences Meeting held in Nashville, TN on 4-9 January 2012.</description><language>eng</language><subject>DETECTORS ; DIGITAL SYSTEMS ; EFFICIENCY ; FINITE ELEMENT ANALYSIS ; INVERSION ; LIQUID PROPELLANT ROCKET ENGINES ; Numerical Mathematics ; REAL TIME ; SIGNAL PROCESSING ; THERMAL BOUNDARY LAYER ; THERMAL CONDUCTIVITY ; Thermodynamics ; WUAFRL50260548</subject><creationdate>2011</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA546652$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Coy, Edward</creatorcontrib><creatorcontrib>Bergkoetter, Matthew</creatorcontrib><creatorcontrib>Danczyk, Stephen</creatorcontrib><creatorcontrib>Felix, Edgar</creatorcontrib><creatorcontrib>AIR FORCE RESEARCH LAB EDWARDS AFB CA PROPULSION DIRECTORATE</creatorcontrib><title>A Finite Element Approach for Multidimensional Inverse Heat Conduction</title><description>An efficient technique for mapping thermal boundary conditions is described and demonstrated. The technique is based on a piece-wise polynomial approximation where the Laplacian derivatives in space are constrained using the heat equation. Measured values for the Laplacian are obtained from temperature rate measurements from sensors embedded within a body. The technique has been implemented in a digital signal processor and is able to provide real-time data on thermal boundary conditions over a surface. The technique is adaptable to complex geometry. In this paper the technique will be applied to a study of the injector-wall interactions in a laboratory scale liquid rocket engine.
Presented at the AIAA Aerospace Sciences Meeting held in Nashville, TN on 4-9 January 2012.</description><subject>DETECTORS</subject><subject>DIGITAL SYSTEMS</subject><subject>EFFICIENCY</subject><subject>FINITE ELEMENT ANALYSIS</subject><subject>INVERSION</subject><subject>LIQUID PROPELLANT ROCKET ENGINES</subject><subject>Numerical Mathematics</subject><subject>REAL TIME</subject><subject>SIGNAL PROCESSING</subject><subject>THERMAL BOUNDARY LAYER</subject><subject>THERMAL CONDUCTIVITY</subject><subject>Thermodynamics</subject><subject>WUAFRL50260548</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2011</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFybEOgjAQANAuDkT9A4b7ARcE9gZpcGBzJ017xEvqlbSH3w8DO9MbXqGMBkNMgtAH_CEL6GVJ0bovzDHBuAYhT3tkimwDvPmPKSMMaAW6yH51ss9NXWYbMt4Pr6o0_acbHl7ITVmIUSb90k3dtk31POkN6sswUg</recordid><startdate>20110526</startdate><enddate>20110526</enddate><creator>Coy, Edward</creator><creator>Bergkoetter, Matthew</creator><creator>Danczyk, Stephen</creator><creator>Felix, Edgar</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>20110526</creationdate><title>A Finite Element Approach for Multidimensional Inverse Heat Conduction</title><author>Coy, Edward ; Bergkoetter, Matthew ; Danczyk, Stephen ; Felix, Edgar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA5466523</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2011</creationdate><topic>DETECTORS</topic><topic>DIGITAL SYSTEMS</topic><topic>EFFICIENCY</topic><topic>FINITE ELEMENT ANALYSIS</topic><topic>INVERSION</topic><topic>LIQUID PROPELLANT ROCKET ENGINES</topic><topic>Numerical Mathematics</topic><topic>REAL TIME</topic><topic>SIGNAL PROCESSING</topic><topic>THERMAL BOUNDARY LAYER</topic><topic>THERMAL CONDUCTIVITY</topic><topic>Thermodynamics</topic><topic>WUAFRL50260548</topic><toplevel>online_resources</toplevel><creatorcontrib>Coy, Edward</creatorcontrib><creatorcontrib>Bergkoetter, Matthew</creatorcontrib><creatorcontrib>Danczyk, Stephen</creatorcontrib><creatorcontrib>Felix, Edgar</creatorcontrib><creatorcontrib>AIR FORCE RESEARCH LAB EDWARDS AFB CA PROPULSION DIRECTORATE</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Coy, Edward</au><au>Bergkoetter, Matthew</au><au>Danczyk, Stephen</au><au>Felix, Edgar</au><aucorp>AIR FORCE RESEARCH LAB EDWARDS AFB CA PROPULSION DIRECTORATE</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>A Finite Element Approach for Multidimensional Inverse Heat Conduction</btitle><date>2011-05-26</date><risdate>2011</risdate><abstract>An efficient technique for mapping thermal boundary conditions is described and demonstrated. The technique is based on a piece-wise polynomial approximation where the Laplacian derivatives in space are constrained using the heat equation. Measured values for the Laplacian are obtained from temperature rate measurements from sensors embedded within a body. The technique has been implemented in a digital signal processor and is able to provide real-time data on thermal boundary conditions over a surface. The technique is adaptable to complex geometry. In this paper the technique will be applied to a study of the injector-wall interactions in a laboratory scale liquid rocket engine.
Presented at the AIAA Aerospace Sciences Meeting held in Nashville, TN on 4-9 January 2012.</abstract><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | |
ispartof | |
issn | |
language | eng |
recordid | cdi_dtic_stinet_ADA546652 |
source | DTIC Technical Reports |
subjects | DETECTORS DIGITAL SYSTEMS EFFICIENCY FINITE ELEMENT ANALYSIS INVERSION LIQUID PROPELLANT ROCKET ENGINES Numerical Mathematics REAL TIME SIGNAL PROCESSING THERMAL BOUNDARY LAYER THERMAL CONDUCTIVITY Thermodynamics WUAFRL50260548 |
title | A Finite Element Approach for Multidimensional Inverse Heat Conduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=A%20Finite%20Element%20Approach%20for%20Multidimensional%20Inverse%20Heat%20Conduction&rft.au=Coy,%20Edward&rft.aucorp=AIR%20FORCE%20RESEARCH%20LAB%20EDWARDS%20AFB%20CA%20PROPULSION%20DIRECTORATE&rft.date=2011-05-26&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA546652%3C/dtic_1RU%3E%3Cgrp_id%3Ecdi_FETCH-dtic_stinet_ADA5466523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |