Loading…

A Finite Element Approach for Multidimensional Inverse Heat Conduction

An efficient technique for mapping thermal boundary conditions is described and demonstrated. The technique is based on a piece-wise polynomial approximation where the Laplacian derivatives in space are constrained using the heat equation. Measured values for the Laplacian are obtained from temperat...

Full description

Saved in:
Bibliographic Details
Main Authors: Coy, Edward, Bergkoetter, Matthew, Danczyk, Stephen, Felix, Edgar
Format: Report
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Coy, Edward
Bergkoetter, Matthew
Danczyk, Stephen
Felix, Edgar
description An efficient technique for mapping thermal boundary conditions is described and demonstrated. The technique is based on a piece-wise polynomial approximation where the Laplacian derivatives in space are constrained using the heat equation. Measured values for the Laplacian are obtained from temperature rate measurements from sensors embedded within a body. The technique has been implemented in a digital signal processor and is able to provide real-time data on thermal boundary conditions over a surface. The technique is adaptable to complex geometry. In this paper the technique will be applied to a study of the injector-wall interactions in a laboratory scale liquid rocket engine. Presented at the AIAA Aerospace Sciences Meeting held in Nashville, TN on 4-9 January 2012.
format report
fullrecord <record><control><sourceid>dtic_1RU</sourceid><recordid>TN_cdi_dtic_stinet_ADA546652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADA546652</sourcerecordid><originalsourceid>FETCH-dtic_stinet_ADA5466523</originalsourceid><addsrcrecordid>eNqFybEOgjAQANAuDkT9A4b7ARcE9gZpcGBzJ017xEvqlbSH3w8DO9MbXqGMBkNMgtAH_CEL6GVJ0bovzDHBuAYhT3tkimwDvPmPKSMMaAW6yH51ss9NXWYbMt4Pr6o0_acbHl7ITVmIUSb90k3dtk31POkN6sswUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>A Finite Element Approach for Multidimensional Inverse Heat Conduction</title><source>DTIC Technical Reports</source><creator>Coy, Edward ; Bergkoetter, Matthew ; Danczyk, Stephen ; Felix, Edgar</creator><creatorcontrib>Coy, Edward ; Bergkoetter, Matthew ; Danczyk, Stephen ; Felix, Edgar ; AIR FORCE RESEARCH LAB EDWARDS AFB CA PROPULSION DIRECTORATE</creatorcontrib><description>An efficient technique for mapping thermal boundary conditions is described and demonstrated. The technique is based on a piece-wise polynomial approximation where the Laplacian derivatives in space are constrained using the heat equation. Measured values for the Laplacian are obtained from temperature rate measurements from sensors embedded within a body. The technique has been implemented in a digital signal processor and is able to provide real-time data on thermal boundary conditions over a surface. The technique is adaptable to complex geometry. In this paper the technique will be applied to a study of the injector-wall interactions in a laboratory scale liquid rocket engine. Presented at the AIAA Aerospace Sciences Meeting held in Nashville, TN on 4-9 January 2012.</description><language>eng</language><subject>DETECTORS ; DIGITAL SYSTEMS ; EFFICIENCY ; FINITE ELEMENT ANALYSIS ; INVERSION ; LIQUID PROPELLANT ROCKET ENGINES ; Numerical Mathematics ; REAL TIME ; SIGNAL PROCESSING ; THERMAL BOUNDARY LAYER ; THERMAL CONDUCTIVITY ; Thermodynamics ; WUAFRL50260548</subject><creationdate>2011</creationdate><rights>Approved for public release; distribution is unlimited.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,780,885,27567,27568</link.rule.ids><linktorsrc>$$Uhttps://apps.dtic.mil/sti/citations/ADA546652$$EView_record_in_DTIC$$FView_record_in_$$GDTIC$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Coy, Edward</creatorcontrib><creatorcontrib>Bergkoetter, Matthew</creatorcontrib><creatorcontrib>Danczyk, Stephen</creatorcontrib><creatorcontrib>Felix, Edgar</creatorcontrib><creatorcontrib>AIR FORCE RESEARCH LAB EDWARDS AFB CA PROPULSION DIRECTORATE</creatorcontrib><title>A Finite Element Approach for Multidimensional Inverse Heat Conduction</title><description>An efficient technique for mapping thermal boundary conditions is described and demonstrated. The technique is based on a piece-wise polynomial approximation where the Laplacian derivatives in space are constrained using the heat equation. Measured values for the Laplacian are obtained from temperature rate measurements from sensors embedded within a body. The technique has been implemented in a digital signal processor and is able to provide real-time data on thermal boundary conditions over a surface. The technique is adaptable to complex geometry. In this paper the technique will be applied to a study of the injector-wall interactions in a laboratory scale liquid rocket engine. Presented at the AIAA Aerospace Sciences Meeting held in Nashville, TN on 4-9 January 2012.</description><subject>DETECTORS</subject><subject>DIGITAL SYSTEMS</subject><subject>EFFICIENCY</subject><subject>FINITE ELEMENT ANALYSIS</subject><subject>INVERSION</subject><subject>LIQUID PROPELLANT ROCKET ENGINES</subject><subject>Numerical Mathematics</subject><subject>REAL TIME</subject><subject>SIGNAL PROCESSING</subject><subject>THERMAL BOUNDARY LAYER</subject><subject>THERMAL CONDUCTIVITY</subject><subject>Thermodynamics</subject><subject>WUAFRL50260548</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2011</creationdate><recordtype>report</recordtype><sourceid>1RU</sourceid><recordid>eNqFybEOgjAQANAuDkT9A4b7ARcE9gZpcGBzJ017xEvqlbSH3w8DO9MbXqGMBkNMgtAH_CEL6GVJ0bovzDHBuAYhT3tkimwDvPmPKSMMaAW6yH51ss9NXWYbMt4Pr6o0_acbHl7ITVmIUSb90k3dtk31POkN6sswUg</recordid><startdate>20110526</startdate><enddate>20110526</enddate><creator>Coy, Edward</creator><creator>Bergkoetter, Matthew</creator><creator>Danczyk, Stephen</creator><creator>Felix, Edgar</creator><scope>1RU</scope><scope>BHM</scope></search><sort><creationdate>20110526</creationdate><title>A Finite Element Approach for Multidimensional Inverse Heat Conduction</title><author>Coy, Edward ; Bergkoetter, Matthew ; Danczyk, Stephen ; Felix, Edgar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-dtic_stinet_ADA5466523</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2011</creationdate><topic>DETECTORS</topic><topic>DIGITAL SYSTEMS</topic><topic>EFFICIENCY</topic><topic>FINITE ELEMENT ANALYSIS</topic><topic>INVERSION</topic><topic>LIQUID PROPELLANT ROCKET ENGINES</topic><topic>Numerical Mathematics</topic><topic>REAL TIME</topic><topic>SIGNAL PROCESSING</topic><topic>THERMAL BOUNDARY LAYER</topic><topic>THERMAL CONDUCTIVITY</topic><topic>Thermodynamics</topic><topic>WUAFRL50260548</topic><toplevel>online_resources</toplevel><creatorcontrib>Coy, Edward</creatorcontrib><creatorcontrib>Bergkoetter, Matthew</creatorcontrib><creatorcontrib>Danczyk, Stephen</creatorcontrib><creatorcontrib>Felix, Edgar</creatorcontrib><creatorcontrib>AIR FORCE RESEARCH LAB EDWARDS AFB CA PROPULSION DIRECTORATE</creatorcontrib><collection>DTIC Technical Reports</collection><collection>DTIC STINET</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Coy, Edward</au><au>Bergkoetter, Matthew</au><au>Danczyk, Stephen</au><au>Felix, Edgar</au><aucorp>AIR FORCE RESEARCH LAB EDWARDS AFB CA PROPULSION DIRECTORATE</aucorp><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>A Finite Element Approach for Multidimensional Inverse Heat Conduction</btitle><date>2011-05-26</date><risdate>2011</risdate><abstract>An efficient technique for mapping thermal boundary conditions is described and demonstrated. The technique is based on a piece-wise polynomial approximation where the Laplacian derivatives in space are constrained using the heat equation. Measured values for the Laplacian are obtained from temperature rate measurements from sensors embedded within a body. The technique has been implemented in a digital signal processor and is able to provide real-time data on thermal boundary conditions over a surface. The technique is adaptable to complex geometry. In this paper the technique will be applied to a study of the injector-wall interactions in a laboratory scale liquid rocket engine. Presented at the AIAA Aerospace Sciences Meeting held in Nashville, TN on 4-9 January 2012.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_dtic_stinet_ADA546652
source DTIC Technical Reports
subjects DETECTORS
DIGITAL SYSTEMS
EFFICIENCY
FINITE ELEMENT ANALYSIS
INVERSION
LIQUID PROPELLANT ROCKET ENGINES
Numerical Mathematics
REAL TIME
SIGNAL PROCESSING
THERMAL BOUNDARY LAYER
THERMAL CONDUCTIVITY
Thermodynamics
WUAFRL50260548
title A Finite Element Approach for Multidimensional Inverse Heat Conduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A19%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-dtic_1RU&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=A%20Finite%20Element%20Approach%20for%20Multidimensional%20Inverse%20Heat%20Conduction&rft.au=Coy,%20Edward&rft.aucorp=AIR%20FORCE%20RESEARCH%20LAB%20EDWARDS%20AFB%20CA%20PROPULSION%20DIRECTORATE&rft.date=2011-05-26&rft_id=info:doi/&rft_dat=%3Cdtic_1RU%3EADA546652%3C/dtic_1RU%3E%3Cgrp_id%3Ecdi_FETCH-dtic_stinet_ADA5466523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true