Loading…
Tritium-Powered Radiation Sensor Network
Isotope power supplies offer solutions for long-lived (100 years), low-power (100 We) energy sources. The energy density of nuclear batteries uniquely serves applications for sensors or communications nodes that are required to last the lifetime of infrastructure. Efficiencies less than 10% are typi...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Report |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Isotope power supplies offer solutions for long-lived (100 years), low-power (100 We) energy sources. The energy density of nuclear batteries uniquely serves applications for sensors or communications nodes that are required to last the lifetime of infrastructure. Efficiencies less than 10% are typical for either direct (or indirect) energy conversion of radiation to electric current. A tritium (3H) beta-source (12.5-year half-life) encapsulated in a phosphor-lined vial is coupled directly to a photovoltaic (PV) generating a trickle current into an electrical load. An inexpensive design approach is described consisting of commercially available components that generate 100 We for next-generation compact electronics and sensor applications. A total of 15 We electrical power is measured from individual 20-Ci tritium cassettes (80 cc) using gallium arsenide (GaAs) PVs. A compact radiation sensor (400 cc) has been designed and built to operate during long-lived missions. A low-power sensor architecture is described and implemented that uses microprocessor-controlled sleep modes, a judicious choice of low-power electronics, and a passive interrupt driven environmental wake-up. The low-power early-warning radiation detector network combined with a long-lived isotope power source enables no-maintenance mission lifetimes dependent only on the half-life of an isotope of choice.
The original document contains color images. |
---|