Loading…
Unfocused Extracorporeal Shock Waves Induce Anabolic Effects in Rat Bone
Background Extracorporeal shock waves are known to stimulate the differentiation of mesenchymal stem cells toward osteoprogenitors and induce the expression of osteogenic-related growth hormones. The aim of this study was to investigate if and how extracorporeal shock waves affected new bone formati...
Saved in:
Published in: | Journal of bone and joint surgery. American volume 2011, Vol.93 (1), p.38-48 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background Extracorporeal shock waves are known to stimulate the differentiation of mesenchymal stem cells toward osteoprogenitors and induce the expression of osteogenic-related growth hormones. The aim of this study was to investigate if and how extracorporeal shock waves affected new bone formation, bone microarchitecture, and the mechanical properties of bone in a healthy rat model, in order to evaluate whether extracorporeal shock wave therapy might be a potential treatment for osteoporosis. Methods Thirteen rats received 1000 electrohydraulically generated unfocused extracorporeal shock waves to the right tibia. The contralateral, left tibia was not treated and served as a control. At two, seven, twenty-one, and forty-nine days after administration of the shock waves, in vivo single-photon-emission computed tomography (SPECT) scanning was performed to measure new bone formation on the basis of uptake of technetium-labeled methylene diphosphonate (99m Tc-MDP) (n = 6). Prior to and forty-nine days after the extracorporeal shock wave therapy, micro-computed tomography (micro-CT) scans were made to examine the architectural bone changes. In addition, mechanical testing, microcrack, and histological analyses were performed. Results Extracorporeal shock waves induced a strong increase in99m Tc-MDP uptake in the treated tibia compared with the uptake in the untreated, control tibia. Micro-CT analysis showed that extracorporeal shock waves stimulated increases in both trabecular and cortical volume, which resulted in higher bone stiffness compared with that of the control tibiae. Histological analysis showed intramedullary soft-tissue damage and de novo bone with active osteoblasts and osteoid in the bone marrow of the legs treated with extracorporeal shock waves. Microcrack analysis showed no differences between the treated and control legs. Conclusions This study shows that a single treatment with extracorporeal shock waves induces anabolic effects in both cancellous and cortical bone, leading to improved biomechanical properties. Furthermore, treatment with extracorporeal shock waves results in transient damage to the bone marrow, which might be related to the anabolic effects. After further examination and optimization, unfocused extracorporeal shock waves might enable local treatment of skeletal sites susceptible to fracture. Clinical Relevance Unfocused extracorporeal shock waves might in the future be used to increase bone mass and subsequently reduce |
---|---|
ISSN: | 0021-9355 |
DOI: | 10.1016/S0021-9355(11)70666-X |