Loading…

Weak Hopf Algebras: I. Integral Theory and C-Structure

We give an introduction to the theory of weak Hopf algebras proposed as a coassociative alternative of weak quasi-Hopf algebras. We follow an axiomatic approach keeping as close as possible to the “classical” theory of Hopf algebras. The emphasis is put on the new structure related to the presence o...

Full description

Saved in:
Bibliographic Details
Published in:Journal of algebra 1999-11, Vol.221 (2), p.385-438
Main Authors: Böhm, Gabriella, Nill, Florian, Szlachányi, Kornél
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 438
container_issue 2
container_start_page 385
container_title Journal of algebra
container_volume 221
creator Böhm, Gabriella
Nill, Florian
Szlachányi, Kornél
description We give an introduction to the theory of weak Hopf algebras proposed as a coassociative alternative of weak quasi-Hopf algebras. We follow an axiomatic approach keeping as close as possible to the “classical” theory of Hopf algebras. The emphasis is put on the new structure related to the presence of canonical subalgebras AL and AR in any weak Hopf algebra A that play the role of non-commutative numbers in many respects. A theory of integrals is developed in which we show how the algebraic properties of A, such as the Frobenius property, or semisimplicity, or innerness of the square of the antipode, are related to the existence of non-degenerate, normalized, or Haar integrals. In case of C*-weak Hopf algebras we prove the existence of a unique Haar measure h∈A and of a canonical grouplike element g∈A implementing the square of the antipode and factorizing into left and right elements g=gLg−1R, gL∈AL, gR∈AR. Further discussion of the C*-case will be presented in Part II.
doi_str_mv 10.1006/jabr.1999.7984
format article
fullrecord <record><control><sourceid>elsevier</sourceid><recordid>TN_cdi_elsevier_sciencedirect_doi_10_1006_jabr_1999_7984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002186939997984X</els_id><sourcerecordid>S002186939997984X</sourcerecordid><originalsourceid>FETCH-LOGICAL-e202t-f26293e1cd5f1e8c65227b14881fcc2a1d2ac8ab60857a2cd974cfa8b688b8313</originalsourceid><addsrcrecordid>eNotz8FKxDAUheEgCtbRreu8QGtu2qY37oaiTmHAhSO6C2lyM3YsraQdwbd3iq7O7j98jN2CyEAIdXewbcxAa51VGoszloDQIpVKvZ-zRAgJKSqdX7KraToIAVAWmDD1RvaTb8avwNf9ntpop3veZLwZZtpH2_PdB43xh9vB8zp9mePRzcdI1-wi2H6im_9dsdfHh129SbfPT0293qYkhZzTIJXUOYHzZQBCp0opqxYKRAjOSQteWoe2VQLLykrndVW4YLFViC3mkK8Y_nXpdPLdUTST62hw5LtIbjZ-7AwIs_jN4jeL3yz-_Bcx2U4A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weak Hopf Algebras: I. Integral Theory and C-Structure</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Böhm, Gabriella ; Nill, Florian ; Szlachányi, Kornél</creator><creatorcontrib>Böhm, Gabriella ; Nill, Florian ; Szlachányi, Kornél</creatorcontrib><description>We give an introduction to the theory of weak Hopf algebras proposed as a coassociative alternative of weak quasi-Hopf algebras. We follow an axiomatic approach keeping as close as possible to the “classical” theory of Hopf algebras. The emphasis is put on the new structure related to the presence of canonical subalgebras AL and AR in any weak Hopf algebra A that play the role of non-commutative numbers in many respects. A theory of integrals is developed in which we show how the algebraic properties of A, such as the Frobenius property, or semisimplicity, or innerness of the square of the antipode, are related to the existence of non-degenerate, normalized, or Haar integrals. In case of C*-weak Hopf algebras we prove the existence of a unique Haar measure h∈A and of a canonical grouplike element g∈A implementing the square of the antipode and factorizing into left and right elements g=gLg−1R, gL∈AL, gR∈AR. Further discussion of the C*-case will be presented in Part II.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1006/jabr.1999.7984</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of algebra, 1999-11, Vol.221 (2), p.385-438</ispartof><rights>1999 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Böhm, Gabriella</creatorcontrib><creatorcontrib>Nill, Florian</creatorcontrib><creatorcontrib>Szlachányi, Kornél</creatorcontrib><title>Weak Hopf Algebras: I. Integral Theory and C-Structure</title><title>Journal of algebra</title><description>We give an introduction to the theory of weak Hopf algebras proposed as a coassociative alternative of weak quasi-Hopf algebras. We follow an axiomatic approach keeping as close as possible to the “classical” theory of Hopf algebras. The emphasis is put on the new structure related to the presence of canonical subalgebras AL and AR in any weak Hopf algebra A that play the role of non-commutative numbers in many respects. A theory of integrals is developed in which we show how the algebraic properties of A, such as the Frobenius property, or semisimplicity, or innerness of the square of the antipode, are related to the existence of non-degenerate, normalized, or Haar integrals. In case of C*-weak Hopf algebras we prove the existence of a unique Haar measure h∈A and of a canonical grouplike element g∈A implementing the square of the antipode and factorizing into left and right elements g=gLg−1R, gL∈AL, gR∈AR. Further discussion of the C*-case will be presented in Part II.</description><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNotz8FKxDAUheEgCtbRreu8QGtu2qY37oaiTmHAhSO6C2lyM3YsraQdwbd3iq7O7j98jN2CyEAIdXewbcxAa51VGoszloDQIpVKvZ-zRAgJKSqdX7KraToIAVAWmDD1RvaTb8avwNf9ntpop3veZLwZZtpH2_PdB43xh9vB8zp9mePRzcdI1-wi2H6im_9dsdfHh129SbfPT0293qYkhZzTIJXUOYHzZQBCp0opqxYKRAjOSQteWoe2VQLLykrndVW4YLFViC3mkK8Y_nXpdPLdUTST62hw5LtIbjZ-7AwIs_jN4jeL3yz-_Bcx2U4A</recordid><startdate>19991115</startdate><enddate>19991115</enddate><creator>Böhm, Gabriella</creator><creator>Nill, Florian</creator><creator>Szlachányi, Kornél</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope></search><sort><creationdate>19991115</creationdate><title>Weak Hopf Algebras: I. Integral Theory and C-Structure</title><author>Böhm, Gabriella ; Nill, Florian ; Szlachányi, Kornél</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e202t-f26293e1cd5f1e8c65227b14881fcc2a1d2ac8ab60857a2cd974cfa8b688b8313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhm, Gabriella</creatorcontrib><creatorcontrib>Nill, Florian</creatorcontrib><creatorcontrib>Szlachányi, Kornél</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhm, Gabriella</au><au>Nill, Florian</au><au>Szlachányi, Kornél</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Hopf Algebras: I. Integral Theory and C-Structure</atitle><jtitle>Journal of algebra</jtitle><date>1999-11-15</date><risdate>1999</risdate><volume>221</volume><issue>2</issue><spage>385</spage><epage>438</epage><pages>385-438</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>We give an introduction to the theory of weak Hopf algebras proposed as a coassociative alternative of weak quasi-Hopf algebras. We follow an axiomatic approach keeping as close as possible to the “classical” theory of Hopf algebras. The emphasis is put on the new structure related to the presence of canonical subalgebras AL and AR in any weak Hopf algebra A that play the role of non-commutative numbers in many respects. A theory of integrals is developed in which we show how the algebraic properties of A, such as the Frobenius property, or semisimplicity, or innerness of the square of the antipode, are related to the existence of non-degenerate, normalized, or Haar integrals. In case of C*-weak Hopf algebras we prove the existence of a unique Haar measure h∈A and of a canonical grouplike element g∈A implementing the square of the antipode and factorizing into left and right elements g=gLg−1R, gL∈AL, gR∈AR. Further discussion of the C*-case will be presented in Part II.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jabr.1999.7984</doi><tpages>54</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8693
ispartof Journal of algebra, 1999-11, Vol.221 (2), p.385-438
issn 0021-8693
1090-266X
language eng
recordid cdi_elsevier_sciencedirect_doi_10_1006_jabr_1999_7984
source ScienceDirect Freedom Collection 2022-2024
title Weak Hopf Algebras: I. Integral Theory and C-Structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T07%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Hopf%20Algebras:%20I.%20Integral%20Theory%20and%20C-Structure&rft.jtitle=Journal%20of%20algebra&rft.au=B%C3%B6hm,%20Gabriella&rft.date=1999-11-15&rft.volume=221&rft.issue=2&rft.spage=385&rft.epage=438&rft.pages=385-438&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1006/jabr.1999.7984&rft_dat=%3Celsevier%3ES002186939997984X%3C/elsevier%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e202t-f26293e1cd5f1e8c65227b14881fcc2a1d2ac8ab60857a2cd974cfa8b688b8313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true