Loading…
Weak Hopf Algebras: I. Integral Theory and C-Structure
We give an introduction to the theory of weak Hopf algebras proposed as a coassociative alternative of weak quasi-Hopf algebras. We follow an axiomatic approach keeping as close as possible to the “classical” theory of Hopf algebras. The emphasis is put on the new structure related to the presence o...
Saved in:
Published in: | Journal of algebra 1999-11, Vol.221 (2), p.385-438 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 438 |
container_issue | 2 |
container_start_page | 385 |
container_title | Journal of algebra |
container_volume | 221 |
creator | Böhm, Gabriella Nill, Florian Szlachányi, Kornél |
description | We give an introduction to the theory of weak Hopf algebras proposed as a coassociative alternative of weak quasi-Hopf algebras. We follow an axiomatic approach keeping as close as possible to the “classical” theory of Hopf algebras. The emphasis is put on the new structure related to the presence of canonical subalgebras AL and AR in any weak Hopf algebra A that play the role of non-commutative numbers in many respects. A theory of integrals is developed in which we show how the algebraic properties of A, such as the Frobenius property, or semisimplicity, or innerness of the square of the antipode, are related to the existence of non-degenerate, normalized, or Haar integrals. In case of C*-weak Hopf algebras we prove the existence of a unique Haar measure h∈A and of a canonical grouplike element g∈A implementing the square of the antipode and factorizing into left and right elements g=gLg−1R, gL∈AL, gR∈AR. Further discussion of the C*-case will be presented in Part II. |
doi_str_mv | 10.1006/jabr.1999.7984 |
format | article |
fullrecord | <record><control><sourceid>elsevier</sourceid><recordid>TN_cdi_elsevier_sciencedirect_doi_10_1006_jabr_1999_7984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002186939997984X</els_id><sourcerecordid>S002186939997984X</sourcerecordid><originalsourceid>FETCH-LOGICAL-e202t-f26293e1cd5f1e8c65227b14881fcc2a1d2ac8ab60857a2cd974cfa8b688b8313</originalsourceid><addsrcrecordid>eNotz8FKxDAUheEgCtbRreu8QGtu2qY37oaiTmHAhSO6C2lyM3YsraQdwbd3iq7O7j98jN2CyEAIdXewbcxAa51VGoszloDQIpVKvZ-zRAgJKSqdX7KraToIAVAWmDD1RvaTb8avwNf9ntpop3veZLwZZtpH2_PdB43xh9vB8zp9mePRzcdI1-wi2H6im_9dsdfHh129SbfPT0293qYkhZzTIJXUOYHzZQBCp0opqxYKRAjOSQteWoe2VQLLykrndVW4YLFViC3mkK8Y_nXpdPLdUTST62hw5LtIbjZ-7AwIs_jN4jeL3yz-_Bcx2U4A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Weak Hopf Algebras: I. Integral Theory and C-Structure</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Böhm, Gabriella ; Nill, Florian ; Szlachányi, Kornél</creator><creatorcontrib>Böhm, Gabriella ; Nill, Florian ; Szlachányi, Kornél</creatorcontrib><description>We give an introduction to the theory of weak Hopf algebras proposed as a coassociative alternative of weak quasi-Hopf algebras. We follow an axiomatic approach keeping as close as possible to the “classical” theory of Hopf algebras. The emphasis is put on the new structure related to the presence of canonical subalgebras AL and AR in any weak Hopf algebra A that play the role of non-commutative numbers in many respects. A theory of integrals is developed in which we show how the algebraic properties of A, such as the Frobenius property, or semisimplicity, or innerness of the square of the antipode, are related to the existence of non-degenerate, normalized, or Haar integrals. In case of C*-weak Hopf algebras we prove the existence of a unique Haar measure h∈A and of a canonical grouplike element g∈A implementing the square of the antipode and factorizing into left and right elements g=gLg−1R, gL∈AL, gR∈AR. Further discussion of the C*-case will be presented in Part II.</description><identifier>ISSN: 0021-8693</identifier><identifier>EISSN: 1090-266X</identifier><identifier>DOI: 10.1006/jabr.1999.7984</identifier><language>eng</language><publisher>Elsevier Inc</publisher><ispartof>Journal of algebra, 1999-11, Vol.221 (2), p.385-438</ispartof><rights>1999 Academic Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Böhm, Gabriella</creatorcontrib><creatorcontrib>Nill, Florian</creatorcontrib><creatorcontrib>Szlachányi, Kornél</creatorcontrib><title>Weak Hopf Algebras: I. Integral Theory and C-Structure</title><title>Journal of algebra</title><description>We give an introduction to the theory of weak Hopf algebras proposed as a coassociative alternative of weak quasi-Hopf algebras. We follow an axiomatic approach keeping as close as possible to the “classical” theory of Hopf algebras. The emphasis is put on the new structure related to the presence of canonical subalgebras AL and AR in any weak Hopf algebra A that play the role of non-commutative numbers in many respects. A theory of integrals is developed in which we show how the algebraic properties of A, such as the Frobenius property, or semisimplicity, or innerness of the square of the antipode, are related to the existence of non-degenerate, normalized, or Haar integrals. In case of C*-weak Hopf algebras we prove the existence of a unique Haar measure h∈A and of a canonical grouplike element g∈A implementing the square of the antipode and factorizing into left and right elements g=gLg−1R, gL∈AL, gR∈AR. Further discussion of the C*-case will be presented in Part II.</description><issn>0021-8693</issn><issn>1090-266X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNotz8FKxDAUheEgCtbRreu8QGtu2qY37oaiTmHAhSO6C2lyM3YsraQdwbd3iq7O7j98jN2CyEAIdXewbcxAa51VGoszloDQIpVKvZ-zRAgJKSqdX7KraToIAVAWmDD1RvaTb8avwNf9ntpop3veZLwZZtpH2_PdB43xh9vB8zp9mePRzcdI1-wi2H6im_9dsdfHh129SbfPT0293qYkhZzTIJXUOYHzZQBCp0opqxYKRAjOSQteWoe2VQLLykrndVW4YLFViC3mkK8Y_nXpdPLdUTST62hw5LtIbjZ-7AwIs_jN4jeL3yz-_Bcx2U4A</recordid><startdate>19991115</startdate><enddate>19991115</enddate><creator>Böhm, Gabriella</creator><creator>Nill, Florian</creator><creator>Szlachányi, Kornél</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope></search><sort><creationdate>19991115</creationdate><title>Weak Hopf Algebras: I. Integral Theory and C-Structure</title><author>Böhm, Gabriella ; Nill, Florian ; Szlachányi, Kornél</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e202t-f26293e1cd5f1e8c65227b14881fcc2a1d2ac8ab60857a2cd974cfa8b688b8313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Böhm, Gabriella</creatorcontrib><creatorcontrib>Nill, Florian</creatorcontrib><creatorcontrib>Szlachányi, Kornél</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><jtitle>Journal of algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Böhm, Gabriella</au><au>Nill, Florian</au><au>Szlachányi, Kornél</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak Hopf Algebras: I. Integral Theory and C-Structure</atitle><jtitle>Journal of algebra</jtitle><date>1999-11-15</date><risdate>1999</risdate><volume>221</volume><issue>2</issue><spage>385</spage><epage>438</epage><pages>385-438</pages><issn>0021-8693</issn><eissn>1090-266X</eissn><abstract>We give an introduction to the theory of weak Hopf algebras proposed as a coassociative alternative of weak quasi-Hopf algebras. We follow an axiomatic approach keeping as close as possible to the “classical” theory of Hopf algebras. The emphasis is put on the new structure related to the presence of canonical subalgebras AL and AR in any weak Hopf algebra A that play the role of non-commutative numbers in many respects. A theory of integrals is developed in which we show how the algebraic properties of A, such as the Frobenius property, or semisimplicity, or innerness of the square of the antipode, are related to the existence of non-degenerate, normalized, or Haar integrals. In case of C*-weak Hopf algebras we prove the existence of a unique Haar measure h∈A and of a canonical grouplike element g∈A implementing the square of the antipode and factorizing into left and right elements g=gLg−1R, gL∈AL, gR∈AR. Further discussion of the C*-case will be presented in Part II.</abstract><pub>Elsevier Inc</pub><doi>10.1006/jabr.1999.7984</doi><tpages>54</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8693 |
ispartof | Journal of algebra, 1999-11, Vol.221 (2), p.385-438 |
issn | 0021-8693 1090-266X |
language | eng |
recordid | cdi_elsevier_sciencedirect_doi_10_1006_jabr_1999_7984 |
source | ScienceDirect Freedom Collection 2022-2024 |
title | Weak Hopf Algebras: I. Integral Theory and C-Structure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T07%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20Hopf%20Algebras:%20I.%20Integral%20Theory%20and%20C-Structure&rft.jtitle=Journal%20of%20algebra&rft.au=B%C3%B6hm,%20Gabriella&rft.date=1999-11-15&rft.volume=221&rft.issue=2&rft.spage=385&rft.epage=438&rft.pages=385-438&rft.issn=0021-8693&rft.eissn=1090-266X&rft_id=info:doi/10.1006/jabr.1999.7984&rft_dat=%3Celsevier%3ES002186939997984X%3C/elsevier%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e202t-f26293e1cd5f1e8c65227b14881fcc2a1d2ac8ab60857a2cd974cfa8b688b8313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |