Loading…

Synthesis and Evaluation of a Water-Soluble Hyperbranched Polymer as Enhanced Oil Recovery Chemical

A novel hyperbranched polymer was synthesized using acrylamide (AM), acrylic acid (AA), N-vinyl-2-pyrrolidone (NVP), and dendrite functional monomer as raw materials by redox initiation system in an aqueous medium. The hyperbranched polymer was characterized by infrared (IR) spectroscopy, 1H NMR spe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemistry 2013, Vol.2013 (2013), p.1-11
Main Authors: Qin, Xiaoping, Lai, Nanjun, Ye, Zhongbin, Peng, Qin, Zhang, Yan, Ming, Zheng
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel hyperbranched polymer was synthesized using acrylamide (AM), acrylic acid (AA), N-vinyl-2-pyrrolidone (NVP), and dendrite functional monomer as raw materials by redox initiation system in an aqueous medium. The hyperbranched polymer was characterized by infrared (IR) spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, elemental analysis, and scanning electron microscope (SEM). The viscosity retention rate of the hyperbranched polymer was 22.89% higher than that of the AM/AA copolymer (HPAM) at 95°C, and the viscosity retention rate was 8.17%, 12.49%, and 13.68% higher than that of HPAM in 18000 mg/L NaCl, 1800 mg/L CaCl2, and 1800 mg/L MgCl2·6H2O brine, respectively. The hyperbranched polymer exhibited higher apparent viscosity (25.2 mPa·s versus 8.1 mPa·s) under 500 s−1 shear rate at 80°C. Furthermore, the enhanced oil recovery (EOR) of 1500 mg/L hyperbranched polymer solutions was up to 23.51% by the core flooding test at 80°C.
ISSN:2090-9063
2090-9071