Loading…

A finite volume approach to simulation of polymer melt flow in channels

Purpose - Numerical simulation of polymer injection processes has become increasingly common in mould design. In industry, such a task is accomplished mainly by using commercial packages. Owing to the complexities inherent of this class of problems, most commercial codes attempt to combine realistic...

Full description

Saved in:
Bibliographic Details
Published in:Engineering computations 2008-01, Vol.25 (3), p.233-250
Main Authors: Zdanski, P.S.B., Vaz, M., Inácio, G.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Purpose - Numerical simulation of polymer injection processes has become increasingly common in mould design. In industry, such a task is accomplished mainly by using commercial packages. Owing to the complexities inherent of this class of problems, most commercial codes attempt to combine realistic rheological descriptions with simplified numerical models. In spite of the apparent success, such approaches are not able to capture important aspects of the flow topology. The present work aims to describe a more elaborate mathematical model based on finite volumes which is able to provide both accurate solutions and further insights on the physics of the polymer flow.Design methodology approach - The mathematical model comprises the momentum and energy equations and a Poisson equation for pressure to impose the incompressibility constraint. The governing equations are discretized using the finite volume method based on central, second-order accurate formulas for both convection and diffusion terms. Artificial dissipation terms are added externally in order to control the odd-even decoupling problem.Findings - The numerical model was conceived within the framework of a generalized Newtonian formulation. The capability of the numerical scheme is illustrated by simulations using three distinct constitutive relations to approach the non-Newtonian behaviour of the polymer melt: isothermal power-law, modified Arrhenius power-law and cross models.Originality value - This paper extends the computational strategies previously developed to Newtonian fluids to account for more complex constitutive relations. The velocity and temperature coupled solution for polymer melts using only second-order accurate formulas constitute also a relevant contribution.
ISSN:0264-4401
1758-7077
DOI:10.1108/02644400810857074