Loading…

Intelligent water drops algorithm

Purpose - The purpose of this paper is to test the capability of a new population-based optimization algorithm for solving an NP-hard problem, called "Multiple Knapsack Problem", or MKP.Design methodology approach - Here, the intelligent water drops (IWD) algorithm, which is a population-b...

Full description

Saved in:
Bibliographic Details
Published in:International journal of intelligent computing and cybernetics 2008-06, Vol.1 (2), p.193-212
Main Author: Shah-Hosseini, Hamed
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c126f-d99d99ae27bb9166b7ff7afe6545f25babdc3e7269d6215a546e2403dfa8c99c3
cites
container_end_page 212
container_issue 2
container_start_page 193
container_title International journal of intelligent computing and cybernetics
container_volume 1
creator Shah-Hosseini, Hamed
description Purpose - The purpose of this paper is to test the capability of a new population-based optimization algorithm for solving an NP-hard problem, called "Multiple Knapsack Problem", or MKP.Design methodology approach - Here, the intelligent water drops (IWD) algorithm, which is a population-based optimization algorithm, is modified to include a suitable local heuristic for the MKP. Then, the proposed algorithm is used to solve the MKP.Findings - The proposed IWD algorithm for the MKP is tested by standard problems and the results demonstrate that the proposed IWD-MKP algorithm is trustable and promising in finding the optimal or near-optimal solutions. It is proved that the IWD algorithm has the property of the convergence in value.Originality value - This paper introduces the new optimization algorithm, IWD, to be used for the first time for the MKP and shows that the IWD is applicable for this NP-hard problem. This research paves the way to modify the IWD for other optimization problems. Moreover, it opens the way to get possibly better results by modifying the proposed IWD-MKP algorithm.
doi_str_mv 10.1108/17563780810874717
format article
fullrecord <record><control><sourceid>emerald</sourceid><recordid>TN_cdi_emerald_primary_10_1108_17563780810874717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10.1108/17563780810874717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c126f-d99d99ae27bb9166b7ff7afe6545f25babdc3e7269d6215a546e2403dfa8c99c3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxXNQaK39AN7Wu6v5s8kkRylaCwUvCt6WyWZSV7Ltkl0Qv71b6q0ID4b3-M3APMZuBL8XgtsHAdoosNxOBioQcMHmx6ycwo8ZuxqGL86N1VbN2e1mP1JK7Y72Y_GNI-Ui5EM_FJh2h9yOn901u4yYBlr-zQV7f356W72U29f1ZvW4LRshTSyDc5OQJHjvhDEeYgSMZHSlo9QefWgUgTQuGCk06sqQrLgKEW3jXKMW7O50lzrKmELd57bD_FOfvVP3IU44_wfn9bGF8zX1C4k5TyM</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intelligent water drops algorithm</title><source>ABI/INFORM Global</source><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Shah-Hosseini, Hamed</creator><creatorcontrib>Shah-Hosseini, Hamed</creatorcontrib><description>Purpose - The purpose of this paper is to test the capability of a new population-based optimization algorithm for solving an NP-hard problem, called "Multiple Knapsack Problem", or MKP.Design methodology approach - Here, the intelligent water drops (IWD) algorithm, which is a population-based optimization algorithm, is modified to include a suitable local heuristic for the MKP. Then, the proposed algorithm is used to solve the MKP.Findings - The proposed IWD algorithm for the MKP is tested by standard problems and the results demonstrate that the proposed IWD-MKP algorithm is trustable and promising in finding the optimal or near-optimal solutions. It is proved that the IWD algorithm has the property of the convergence in value.Originality value - This paper introduces the new optimization algorithm, IWD, to be used for the first time for the MKP and shows that the IWD is applicable for this NP-hard problem. This research paves the way to modify the IWD for other optimization problems. Moreover, it opens the way to get possibly better results by modifying the proposed IWD-MKP algorithm.</description><identifier>ISSN: 1756-378X</identifier><identifier>DOI: 10.1108/17563780810874717</identifier><language>eng</language><publisher>Emerald Group Publishing Limited</publisher><ispartof>International journal of intelligent computing and cybernetics, 2008-06, Vol.1 (2), p.193-212</ispartof><rights>Emerald Group Publishing Limited</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c126f-d99d99ae27bb9166b7ff7afe6545f25babdc3e7269d6215a546e2403dfa8c99c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Shah-Hosseini, Hamed</creatorcontrib><title>Intelligent water drops algorithm</title><title>International journal of intelligent computing and cybernetics</title><description>Purpose - The purpose of this paper is to test the capability of a new population-based optimization algorithm for solving an NP-hard problem, called "Multiple Knapsack Problem", or MKP.Design methodology approach - Here, the intelligent water drops (IWD) algorithm, which is a population-based optimization algorithm, is modified to include a suitable local heuristic for the MKP. Then, the proposed algorithm is used to solve the MKP.Findings - The proposed IWD algorithm for the MKP is tested by standard problems and the results demonstrate that the proposed IWD-MKP algorithm is trustable and promising in finding the optimal or near-optimal solutions. It is proved that the IWD algorithm has the property of the convergence in value.Originality value - This paper introduces the new optimization algorithm, IWD, to be used for the first time for the MKP and shows that the IWD is applicable for this NP-hard problem. This research paves the way to modify the IWD for other optimization problems. Moreover, it opens the way to get possibly better results by modifying the proposed IWD-MKP algorithm.</description><issn>1756-378X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNp1kE9LAzEQxXNQaK39AN7Wu6v5s8kkRylaCwUvCt6WyWZSV7Ltkl0Qv71b6q0ID4b3-M3APMZuBL8XgtsHAdoosNxOBioQcMHmx6ycwo8ZuxqGL86N1VbN2e1mP1JK7Y72Y_GNI-Ui5EM_FJh2h9yOn901u4yYBlr-zQV7f356W72U29f1ZvW4LRshTSyDc5OQJHjvhDEeYgSMZHSlo9QefWgUgTQuGCk06sqQrLgKEW3jXKMW7O50lzrKmELd57bD_FOfvVP3IU44_wfn9bGF8zX1C4k5TyM</recordid><startdate>20080606</startdate><enddate>20080606</enddate><creator>Shah-Hosseini, Hamed</creator><general>Emerald Group Publishing Limited</general><scope/></search><sort><creationdate>20080606</creationdate><title>Intelligent water drops algorithm</title><author>Shah-Hosseini, Hamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c126f-d99d99ae27bb9166b7ff7afe6545f25babdc3e7269d6215a546e2403dfa8c99c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah-Hosseini, Hamed</creatorcontrib><jtitle>International journal of intelligent computing and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah-Hosseini, Hamed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent water drops algorithm</atitle><jtitle>International journal of intelligent computing and cybernetics</jtitle><date>2008-06-06</date><risdate>2008</risdate><volume>1</volume><issue>2</issue><spage>193</spage><epage>212</epage><pages>193-212</pages><issn>1756-378X</issn><abstract>Purpose - The purpose of this paper is to test the capability of a new population-based optimization algorithm for solving an NP-hard problem, called "Multiple Knapsack Problem", or MKP.Design methodology approach - Here, the intelligent water drops (IWD) algorithm, which is a population-based optimization algorithm, is modified to include a suitable local heuristic for the MKP. Then, the proposed algorithm is used to solve the MKP.Findings - The proposed IWD algorithm for the MKP is tested by standard problems and the results demonstrate that the proposed IWD-MKP algorithm is trustable and promising in finding the optimal or near-optimal solutions. It is proved that the IWD algorithm has the property of the convergence in value.Originality value - This paper introduces the new optimization algorithm, IWD, to be used for the first time for the MKP and shows that the IWD is applicable for this NP-hard problem. This research paves the way to modify the IWD for other optimization problems. Moreover, it opens the way to get possibly better results by modifying the proposed IWD-MKP algorithm.</abstract><pub>Emerald Group Publishing Limited</pub><doi>10.1108/17563780810874717</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1756-378X
ispartof International journal of intelligent computing and cybernetics, 2008-06, Vol.1 (2), p.193-212
issn 1756-378X
language eng
recordid cdi_emerald_primary_10_1108_17563780810874717
source ABI/INFORM Global; Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)
title Intelligent water drops algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-emerald&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20water%20drops%20algorithm&rft.jtitle=International%20journal%20of%20intelligent%20computing%20and%20cybernetics&rft.au=Shah-Hosseini,%20Hamed&rft.date=2008-06-06&rft.volume=1&rft.issue=2&rft.spage=193&rft.epage=212&rft.pages=193-212&rft.issn=1756-378X&rft_id=info:doi/10.1108/17563780810874717&rft_dat=%3Cemerald%3E10.1108/17563780810874717%3C/emerald%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c126f-d99d99ae27bb9166b7ff7afe6545f25babdc3e7269d6215a546e2403dfa8c99c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true