Loading…
Phosphate-doped polyaniline/Al2O3 nanocomposite coating for protection of stainless steel
Purpose This work aims to prepare and characterize of protective anticorrosion phosphate-doped polyaniline (PANI) nanocomposite coatings for stainless steel (SS) in chloride solution. Design/methodology/approach PANI composite coatings were electrodeposited from aqueous sulfuric acid solution contai...
Saved in:
Published in: | Anti-corrosion methods and materials 2020-09, Vol.67 (5), p.491-499 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 499 |
container_issue | 5 |
container_start_page | 491 |
container_title | Anti-corrosion methods and materials |
container_volume | 67 |
creator | Hermas, Abou-Elhagag A Wahdan, Mostafa H Ahmed, Eatemad M |
description | Purpose
This work aims to prepare and characterize of protective anticorrosion phosphate-doped polyaniline (PANI) nanocomposite coatings for stainless steel (SS) in chloride solution.
Design/methodology/approach
PANI composite coatings were electrodeposited from aqueous sulfuric acid solution containing monomer and Al2O3 nanoparticles using cyclic voltammetry technique. Doping by phosphate was done by aging the coated steels for different periods (1–168 h) in phosphate solution. The polymer film composite was investigated by Fourier-transform infrared spectroscopy and scanning electron microscopy techniques. Potential-time, anodic polarization and electrochemical impedance spectroscopy were used to study the protection efficiency of the coatings.
Findings
The Al2O3 nanoparticles were incorporated into the deposited PANI layer but they decreased the deposition of polymer. The nanoparticles and the phosphate anions enhanced the protective PANI layer for passivation and protection of SS in the chloride solution.
Originality/value
The replacement of counter anions by phosphate ions improved significantly the PANI and its nanocomposite as protective coating of SS in chloride solution. |
doi_str_mv | 10.1108/ACMM-05-2020-2305 |
format | article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_ACMM-05-2020-2305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446960777</sourcerecordid><originalsourceid>FETCH-LOGICAL-e139t-4d628275d9998465247c57544908f7962c0c5d387a97194ffb345082b6d84a813</originalsourceid><addsrcrecordid>eNplUM1KAzEYDKJgrT6AtwXPsV_-NsmxFLVCSz3owdOSbrI2JU3WTXro27tSb55mBoaZYRC6J_BICKjZfLFeYxCYAgVMGYgLNCFSKMwpJZdoAgAMC6H1NbrJeT9KSrmcoM-3Xcr9zhSHbeqdrfoUTib64KObzQPdsCqamNp06FP2xVVtMsXHr6pLQ9UPqbi2-BSr1FW5GB-Dy3lkzoVbdNWZkN3dH07Rx_PT-2KJV5uX18V8hR1humBua6qoFFZrrXgtxlWtkIJzDaqTuqYttMIyJY2WRPOu2zIuQNFtbRU3irApejjnjmu-jy6XZp-OQxwrG8p5rWuQUo4uOLvcwQ0m2KYf_MEMp4ZA83tg8-9A9gNqp2HE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446960777</pqid></control><display><type>article</type><title>Phosphate-doped polyaniline/Al2O3 nanocomposite coating for protection of stainless steel</title><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Hermas, Abou-Elhagag A ; Wahdan, Mostafa H ; Ahmed, Eatemad M</creator><creatorcontrib>Hermas, Abou-Elhagag A ; Wahdan, Mostafa H ; Ahmed, Eatemad M</creatorcontrib><description>Purpose
This work aims to prepare and characterize of protective anticorrosion phosphate-doped polyaniline (PANI) nanocomposite coatings for stainless steel (SS) in chloride solution.
Design/methodology/approach
PANI composite coatings were electrodeposited from aqueous sulfuric acid solution containing monomer and Al2O3 nanoparticles using cyclic voltammetry technique. Doping by phosphate was done by aging the coated steels for different periods (1–168 h) in phosphate solution. The polymer film composite was investigated by Fourier-transform infrared spectroscopy and scanning electron microscopy techniques. Potential-time, anodic polarization and electrochemical impedance spectroscopy were used to study the protection efficiency of the coatings.
Findings
The Al2O3 nanoparticles were incorporated into the deposited PANI layer but they decreased the deposition of polymer. The nanoparticles and the phosphate anions enhanced the protective PANI layer for passivation and protection of SS in the chloride solution.
Originality/value
The replacement of counter anions by phosphate ions improved significantly the PANI and its nanocomposite as protective coating of SS in chloride solution.</description><identifier>ISSN: 0003-5599</identifier><identifier>EISSN: 1758-4221</identifier><identifier>DOI: 10.1108/ACMM-05-2020-2305</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Ageing ; Aging (metallurgy) ; Aluminum oxide ; Analytical methods ; Anions ; Anodic polarization ; Anodic protection ; Aqueous solutions ; Chlorides ; Coated electrodes ; Coatings ; Composite materials ; Corrosion potential ; Corrosion prevention ; Corrosion resistance ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrodes ; Electrolytes ; Electron microscopy ; Fourier transforms ; Infrared spectroscopy ; Nanocomposites ; Nanoparticles ; Phosphates ; Polyanilines ; Polymer films ; Polymerization ; Polymers ; Protection ; Protective coatings ; Spectrum analysis ; Stainless steel ; Stainless steels ; Sulfuric acid ; Sulphuric acid</subject><ispartof>Anti-corrosion methods and materials, 2020-09, Vol.67 (5), p.491-499</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hermas, Abou-Elhagag A</creatorcontrib><creatorcontrib>Wahdan, Mostafa H</creatorcontrib><creatorcontrib>Ahmed, Eatemad M</creatorcontrib><title>Phosphate-doped polyaniline/Al2O3 nanocomposite coating for protection of stainless steel</title><title>Anti-corrosion methods and materials</title><description>Purpose
This work aims to prepare and characterize of protective anticorrosion phosphate-doped polyaniline (PANI) nanocomposite coatings for stainless steel (SS) in chloride solution.
Design/methodology/approach
PANI composite coatings were electrodeposited from aqueous sulfuric acid solution containing monomer and Al2O3 nanoparticles using cyclic voltammetry technique. Doping by phosphate was done by aging the coated steels for different periods (1–168 h) in phosphate solution. The polymer film composite was investigated by Fourier-transform infrared spectroscopy and scanning electron microscopy techniques. Potential-time, anodic polarization and electrochemical impedance spectroscopy were used to study the protection efficiency of the coatings.
Findings
The Al2O3 nanoparticles were incorporated into the deposited PANI layer but they decreased the deposition of polymer. The nanoparticles and the phosphate anions enhanced the protective PANI layer for passivation and protection of SS in the chloride solution.
Originality/value
The replacement of counter anions by phosphate ions improved significantly the PANI and its nanocomposite as protective coating of SS in chloride solution.</description><subject>Ageing</subject><subject>Aging (metallurgy)</subject><subject>Aluminum oxide</subject><subject>Analytical methods</subject><subject>Anions</subject><subject>Anodic polarization</subject><subject>Anodic protection</subject><subject>Aqueous solutions</subject><subject>Chlorides</subject><subject>Coated electrodes</subject><subject>Coatings</subject><subject>Composite materials</subject><subject>Corrosion potential</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron microscopy</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Phosphates</subject><subject>Polyanilines</subject><subject>Polymer films</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Protection</subject><subject>Protective coatings</subject><subject>Spectrum analysis</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Sulfuric acid</subject><subject>Sulphuric acid</subject><issn>0003-5599</issn><issn>1758-4221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNplUM1KAzEYDKJgrT6AtwXPsV_-NsmxFLVCSz3owdOSbrI2JU3WTXro27tSb55mBoaZYRC6J_BICKjZfLFeYxCYAgVMGYgLNCFSKMwpJZdoAgAMC6H1NbrJeT9KSrmcoM-3Xcr9zhSHbeqdrfoUTib64KObzQPdsCqamNp06FP2xVVtMsXHr6pLQ9UPqbi2-BSr1FW5GB-Dy3lkzoVbdNWZkN3dH07Rx_PT-2KJV5uX18V8hR1humBua6qoFFZrrXgtxlWtkIJzDaqTuqYttMIyJY2WRPOu2zIuQNFtbRU3irApejjnjmu-jy6XZp-OQxwrG8p5rWuQUo4uOLvcwQ0m2KYf_MEMp4ZA83tg8-9A9gNqp2HE</recordid><startdate>20200930</startdate><enddate>20200930</enddate><creator>Hermas, Abou-Elhagag A</creator><creator>Wahdan, Mostafa H</creator><creator>Ahmed, Eatemad M</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>7SE</scope><scope>7SR</scope><scope>7WY</scope><scope>7XB</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0F</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200930</creationdate><title>Phosphate-doped polyaniline/Al2O3 nanocomposite coating for protection of stainless steel</title><author>Hermas, Abou-Elhagag A ; Wahdan, Mostafa H ; Ahmed, Eatemad M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e139t-4d628275d9998465247c57544908f7962c0c5d387a97194ffb345082b6d84a813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ageing</topic><topic>Aging (metallurgy)</topic><topic>Aluminum oxide</topic><topic>Analytical methods</topic><topic>Anions</topic><topic>Anodic polarization</topic><topic>Anodic protection</topic><topic>Aqueous solutions</topic><topic>Chlorides</topic><topic>Coated electrodes</topic><topic>Coatings</topic><topic>Composite materials</topic><topic>Corrosion potential</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron microscopy</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Phosphates</topic><topic>Polyanilines</topic><topic>Polymer films</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Protection</topic><topic>Protective coatings</topic><topic>Spectrum analysis</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Sulfuric acid</topic><topic>Sulphuric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hermas, Abou-Elhagag A</creatorcontrib><creatorcontrib>Wahdan, Mostafa H</creatorcontrib><creatorcontrib>Ahmed, Eatemad M</creatorcontrib><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Collection</collection><collection>Science Journals (ProQuest Database)</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Anti-corrosion methods and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermas, Abou-Elhagag A</au><au>Wahdan, Mostafa H</au><au>Ahmed, Eatemad M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphate-doped polyaniline/Al2O3 nanocomposite coating for protection of stainless steel</atitle><jtitle>Anti-corrosion methods and materials</jtitle><date>2020-09-30</date><risdate>2020</risdate><volume>67</volume><issue>5</issue><spage>491</spage><epage>499</epage><pages>491-499</pages><issn>0003-5599</issn><eissn>1758-4221</eissn><abstract>Purpose
This work aims to prepare and characterize of protective anticorrosion phosphate-doped polyaniline (PANI) nanocomposite coatings for stainless steel (SS) in chloride solution.
Design/methodology/approach
PANI composite coatings were electrodeposited from aqueous sulfuric acid solution containing monomer and Al2O3 nanoparticles using cyclic voltammetry technique. Doping by phosphate was done by aging the coated steels for different periods (1–168 h) in phosphate solution. The polymer film composite was investigated by Fourier-transform infrared spectroscopy and scanning electron microscopy techniques. Potential-time, anodic polarization and electrochemical impedance spectroscopy were used to study the protection efficiency of the coatings.
Findings
The Al2O3 nanoparticles were incorporated into the deposited PANI layer but they decreased the deposition of polymer. The nanoparticles and the phosphate anions enhanced the protective PANI layer for passivation and protection of SS in the chloride solution.
Originality/value
The replacement of counter anions by phosphate ions improved significantly the PANI and its nanocomposite as protective coating of SS in chloride solution.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/ACMM-05-2020-2305</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-5599 |
ispartof | Anti-corrosion methods and materials, 2020-09, Vol.67 (5), p.491-499 |
issn | 0003-5599 1758-4221 |
language | eng |
recordid | cdi_emerald_primary_10_1108_ACMM-05-2020-2305 |
source | Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list) |
subjects | Ageing Aging (metallurgy) Aluminum oxide Analytical methods Anions Anodic polarization Anodic protection Aqueous solutions Chlorides Coated electrodes Coatings Composite materials Corrosion potential Corrosion prevention Corrosion resistance Electrochemical impedance spectroscopy Electrochemistry Electrodes Electrolytes Electron microscopy Fourier transforms Infrared spectroscopy Nanocomposites Nanoparticles Phosphates Polyanilines Polymer films Polymerization Polymers Protection Protective coatings Spectrum analysis Stainless steel Stainless steels Sulfuric acid Sulphuric acid |
title | Phosphate-doped polyaniline/Al2O3 nanocomposite coating for protection of stainless steel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A54%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphate-doped%20polyaniline/Al2O3%20nanocomposite%20coating%20for%20protection%20of%20stainless%20steel&rft.jtitle=Anti-corrosion%20methods%20and%20materials&rft.au=Hermas,%20Abou-Elhagag%20A&rft.date=2020-09-30&rft.volume=67&rft.issue=5&rft.spage=491&rft.epage=499&rft.pages=491-499&rft.issn=0003-5599&rft.eissn=1758-4221&rft_id=info:doi/10.1108/ACMM-05-2020-2305&rft_dat=%3Cproquest_emera%3E2446960777%3C/proquest_emera%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e139t-4d628275d9998465247c57544908f7962c0c5d387a97194ffb345082b6d84a813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2446960777&rft_id=info:pmid/&rfr_iscdi=true |