Loading…
Identifying the cavitation erosion stages of AA5083 by electrochemical noise analyses
Purpose The purpose of this paper is to study the cavitation erosion stages of AA5083 by electrochemical noise (EN). Design/methodology/approach EN technology including noise resistance and fast Fourier transform were used to characterize the electrochemical process during the cavitation erosion pro...
Saved in:
Published in: | Anti-corrosion methods and materials 2023-02, Vol.70 (2), p.53-58 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3 |
container_end_page | 58 |
container_issue | 2 |
container_start_page | 53 |
container_title | Anti-corrosion methods and materials |
container_volume | 70 |
creator | Zhu, Yesen Liu, Zhe Qin, Zhenbo Hou, Mengyang Hu, Taoyong Yuan, Quan |
description | Purpose
The purpose of this paper is to study the cavitation erosion stages of AA5083 by electrochemical noise (EN).
Design/methodology/approach
EN technology including noise resistance and fast Fourier transform were used to characterize the electrochemical process during the cavitation erosion process.
Findings
AA5083 suffers from uniform corrosion during the cavitation erosion process. The whole cavitation erosion process can be divided into three stages: incubation stage, acceleration stage and steady-state stage. EN signals showed obvious differences in different stages of cavitation erosion.
Originality/value
EN technique is a suitable method that can be used to study cavitation erosion mechanism and identify cavitation erosion stages. |
doi_str_mv | 10.1108/ACMM-11-2022-2722 |
format | article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_ACMM-11-2022-2722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2849303716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EEqXwA7hZ4mzwK3FyjCoelVpxoWfLsddtqjQptouUf0-icgCJ08xKM6vdD6F7Rh8Zo8VTtVivCWOEU84JV5xfoBmlVJAsK8vLX_4a3cS4H0fOpZqhzdJBlxo_NN0Wpx1ga76aZFLTdxhCHyeNyWwh4t7jqspoIXA9YGjBptDbHRwaa1rc9U0EbDrTDhHiLbrypo1w96NztHl5_li8kdX763JRrYgVTCZSGimZYW68RBglcl6LktdlmflcQJbJ2ksBKvNARaG8crliVuaSO-cUK8CIOXo47z2G_vMEMel9fwrjEVHzQpaCCsXyMcXOKTs-FAN4fQzNwYRBM6onenqiNzo90dMTvbFDzx04QDCt-7fyB7j4BqfTb68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849303716</pqid></control><display><type>article</type><title>Identifying the cavitation erosion stages of AA5083 by electrochemical noise analyses</title><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Zhu, Yesen ; Liu, Zhe ; Qin, Zhenbo ; Hou, Mengyang ; Hu, Taoyong ; Yuan, Quan</creator><creatorcontrib>Zhu, Yesen ; Liu, Zhe ; Qin, Zhenbo ; Hou, Mengyang ; Hu, Taoyong ; Yuan, Quan</creatorcontrib><description>Purpose
The purpose of this paper is to study the cavitation erosion stages of AA5083 by electrochemical noise (EN).
Design/methodology/approach
EN technology including noise resistance and fast Fourier transform were used to characterize the electrochemical process during the cavitation erosion process.
Findings
AA5083 suffers from uniform corrosion during the cavitation erosion process. The whole cavitation erosion process can be divided into three stages: incubation stage, acceleration stage and steady-state stage. EN signals showed obvious differences in different stages of cavitation erosion.
Originality/value
EN technique is a suitable method that can be used to study cavitation erosion mechanism and identify cavitation erosion stages.</description><identifier>ISSN: 0003-5599</identifier><identifier>EISSN: 0003-5599</identifier><identifier>EISSN: 1758-4221</identifier><identifier>DOI: 10.1108/ACMM-11-2022-2722</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Cavitation ; Cavitation erosion ; Corrosion ; Corrosion potential ; Corrosion resistance ; Deformation ; Electrochemical noise ; Electrochemistry ; Erosion mechanisms ; Fast Fourier transformations ; Flow control ; Fourier transforms ; Intermetallic compounds ; Morphology ; Noise ; Spectrum analysis ; Uniform attack (corrosion)</subject><ispartof>Anti-corrosion methods and materials, 2023-02, Vol.70 (2), p.53-58</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3</citedby><cites>FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Yesen</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Qin, Zhenbo</creatorcontrib><creatorcontrib>Hou, Mengyang</creatorcontrib><creatorcontrib>Hu, Taoyong</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><title>Identifying the cavitation erosion stages of AA5083 by electrochemical noise analyses</title><title>Anti-corrosion methods and materials</title><description>Purpose
The purpose of this paper is to study the cavitation erosion stages of AA5083 by electrochemical noise (EN).
Design/methodology/approach
EN technology including noise resistance and fast Fourier transform were used to characterize the electrochemical process during the cavitation erosion process.
Findings
AA5083 suffers from uniform corrosion during the cavitation erosion process. The whole cavitation erosion process can be divided into three stages: incubation stage, acceleration stage and steady-state stage. EN signals showed obvious differences in different stages of cavitation erosion.
Originality/value
EN technique is a suitable method that can be used to study cavitation erosion mechanism and identify cavitation erosion stages.</description><subject>Cavitation</subject><subject>Cavitation erosion</subject><subject>Corrosion</subject><subject>Corrosion potential</subject><subject>Corrosion resistance</subject><subject>Deformation</subject><subject>Electrochemical noise</subject><subject>Electrochemistry</subject><subject>Erosion mechanisms</subject><subject>Fast Fourier transformations</subject><subject>Flow control</subject><subject>Fourier transforms</subject><subject>Intermetallic compounds</subject><subject>Morphology</subject><subject>Noise</subject><subject>Spectrum analysis</subject><subject>Uniform attack (corrosion)</subject><issn>0003-5599</issn><issn>0003-5599</issn><issn>1758-4221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkEtPwzAQhC0EEqXwA7hZ4mzwK3FyjCoelVpxoWfLsddtqjQptouUf0-icgCJ08xKM6vdD6F7Rh8Zo8VTtVivCWOEU84JV5xfoBmlVJAsK8vLX_4a3cS4H0fOpZqhzdJBlxo_NN0Wpx1ga76aZFLTdxhCHyeNyWwh4t7jqspoIXA9YGjBptDbHRwaa1rc9U0EbDrTDhHiLbrypo1w96NztHl5_li8kdX763JRrYgVTCZSGimZYW68RBglcl6LktdlmflcQJbJ2ksBKvNARaG8crliVuaSO-cUK8CIOXo47z2G_vMEMel9fwrjEVHzQpaCCsXyMcXOKTs-FAN4fQzNwYRBM6onenqiNzo90dMTvbFDzx04QDCt-7fyB7j4BqfTb68</recordid><startdate>20230209</startdate><enddate>20230209</enddate><creator>Zhu, Yesen</creator><creator>Liu, Zhe</creator><creator>Qin, Zhenbo</creator><creator>Hou, Mengyang</creator><creator>Hu, Taoyong</creator><creator>Yuan, Quan</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>7WY</scope><scope>7XB</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0F</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230209</creationdate><title>Identifying the cavitation erosion stages of AA5083 by electrochemical noise analyses</title><author>Zhu, Yesen ; Liu, Zhe ; Qin, Zhenbo ; Hou, Mengyang ; Hu, Taoyong ; Yuan, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cavitation</topic><topic>Cavitation erosion</topic><topic>Corrosion</topic><topic>Corrosion potential</topic><topic>Corrosion resistance</topic><topic>Deformation</topic><topic>Electrochemical noise</topic><topic>Electrochemistry</topic><topic>Erosion mechanisms</topic><topic>Fast Fourier transformations</topic><topic>Flow control</topic><topic>Fourier transforms</topic><topic>Intermetallic compounds</topic><topic>Morphology</topic><topic>Noise</topic><topic>Spectrum analysis</topic><topic>Uniform attack (corrosion)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yesen</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Qin, Zhenbo</creatorcontrib><creatorcontrib>Hou, Mengyang</creatorcontrib><creatorcontrib>Hu, Taoyong</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Trade & Industry</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Anti-corrosion methods and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yesen</au><au>Liu, Zhe</au><au>Qin, Zhenbo</au><au>Hou, Mengyang</au><au>Hu, Taoyong</au><au>Yuan, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying the cavitation erosion stages of AA5083 by electrochemical noise analyses</atitle><jtitle>Anti-corrosion methods and materials</jtitle><date>2023-02-09</date><risdate>2023</risdate><volume>70</volume><issue>2</issue><spage>53</spage><epage>58</epage><pages>53-58</pages><issn>0003-5599</issn><eissn>0003-5599</eissn><eissn>1758-4221</eissn><abstract>Purpose
The purpose of this paper is to study the cavitation erosion stages of AA5083 by electrochemical noise (EN).
Design/methodology/approach
EN technology including noise resistance and fast Fourier transform were used to characterize the electrochemical process during the cavitation erosion process.
Findings
AA5083 suffers from uniform corrosion during the cavitation erosion process. The whole cavitation erosion process can be divided into three stages: incubation stage, acceleration stage and steady-state stage. EN signals showed obvious differences in different stages of cavitation erosion.
Originality/value
EN technique is a suitable method that can be used to study cavitation erosion mechanism and identify cavitation erosion stages.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/ACMM-11-2022-2722</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-5599 |
ispartof | Anti-corrosion methods and materials, 2023-02, Vol.70 (2), p.53-58 |
issn | 0003-5599 0003-5599 1758-4221 |
language | eng |
recordid | cdi_emerald_primary_10_1108_ACMM-11-2022-2722 |
source | Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list) |
subjects | Cavitation Cavitation erosion Corrosion Corrosion potential Corrosion resistance Deformation Electrochemical noise Electrochemistry Erosion mechanisms Fast Fourier transformations Flow control Fourier transforms Intermetallic compounds Morphology Noise Spectrum analysis Uniform attack (corrosion) |
title | Identifying the cavitation erosion stages of AA5083 by electrochemical noise analyses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20the%20cavitation%20erosion%20stages%20of%20AA5083%20by%20electrochemical%20noise%20analyses&rft.jtitle=Anti-corrosion%20methods%20and%20materials&rft.au=Zhu,%20Yesen&rft.date=2023-02-09&rft.volume=70&rft.issue=2&rft.spage=53&rft.epage=58&rft.pages=53-58&rft.issn=0003-5599&rft.eissn=0003-5599&rft_id=info:doi/10.1108/ACMM-11-2022-2722&rft_dat=%3Cproquest_emera%3E2849303716%3C/proquest_emera%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2849303716&rft_id=info:pmid/&rfr_iscdi=true |