Loading…

Identifying the cavitation erosion stages of AA5083 by electrochemical noise analyses

Purpose The purpose of this paper is to study the cavitation erosion stages of AA5083 by electrochemical noise (EN). Design/methodology/approach EN technology including noise resistance and fast Fourier transform were used to characterize the electrochemical process during the cavitation erosion pro...

Full description

Saved in:
Bibliographic Details
Published in:Anti-corrosion methods and materials 2023-02, Vol.70 (2), p.53-58
Main Authors: Zhu, Yesen, Liu, Zhe, Qin, Zhenbo, Hou, Mengyang, Hu, Taoyong, Yuan, Quan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3
cites cdi_FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3
container_end_page 58
container_issue 2
container_start_page 53
container_title Anti-corrosion methods and materials
container_volume 70
creator Zhu, Yesen
Liu, Zhe
Qin, Zhenbo
Hou, Mengyang
Hu, Taoyong
Yuan, Quan
description Purpose The purpose of this paper is to study the cavitation erosion stages of AA5083 by electrochemical noise (EN). Design/methodology/approach EN technology including noise resistance and fast Fourier transform were used to characterize the electrochemical process during the cavitation erosion process. Findings AA5083 suffers from uniform corrosion during the cavitation erosion process. The whole cavitation erosion process can be divided into three stages: incubation stage, acceleration stage and steady-state stage. EN signals showed obvious differences in different stages of cavitation erosion. Originality/value EN technique is a suitable method that can be used to study cavitation erosion mechanism and identify cavitation erosion stages.
doi_str_mv 10.1108/ACMM-11-2022-2722
format article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_ACMM-11-2022-2722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2849303716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EEqXwA7hZ4mzwK3FyjCoelVpxoWfLsddtqjQptouUf0-icgCJ08xKM6vdD6F7Rh8Zo8VTtVivCWOEU84JV5xfoBmlVJAsK8vLX_4a3cS4H0fOpZqhzdJBlxo_NN0Wpx1ga76aZFLTdxhCHyeNyWwh4t7jqspoIXA9YGjBptDbHRwaa1rc9U0EbDrTDhHiLbrypo1w96NztHl5_li8kdX763JRrYgVTCZSGimZYW68RBglcl6LktdlmflcQJbJ2ksBKvNARaG8crliVuaSO-cUK8CIOXo47z2G_vMEMel9fwrjEVHzQpaCCsXyMcXOKTs-FAN4fQzNwYRBM6onenqiNzo90dMTvbFDzx04QDCt-7fyB7j4BqfTb68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2849303716</pqid></control><display><type>article</type><title>Identifying the cavitation erosion stages of AA5083 by electrochemical noise analyses</title><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Zhu, Yesen ; Liu, Zhe ; Qin, Zhenbo ; Hou, Mengyang ; Hu, Taoyong ; Yuan, Quan</creator><creatorcontrib>Zhu, Yesen ; Liu, Zhe ; Qin, Zhenbo ; Hou, Mengyang ; Hu, Taoyong ; Yuan, Quan</creatorcontrib><description>Purpose The purpose of this paper is to study the cavitation erosion stages of AA5083 by electrochemical noise (EN). Design/methodology/approach EN technology including noise resistance and fast Fourier transform were used to characterize the electrochemical process during the cavitation erosion process. Findings AA5083 suffers from uniform corrosion during the cavitation erosion process. The whole cavitation erosion process can be divided into three stages: incubation stage, acceleration stage and steady-state stage. EN signals showed obvious differences in different stages of cavitation erosion. Originality/value EN technique is a suitable method that can be used to study cavitation erosion mechanism and identify cavitation erosion stages.</description><identifier>ISSN: 0003-5599</identifier><identifier>EISSN: 0003-5599</identifier><identifier>EISSN: 1758-4221</identifier><identifier>DOI: 10.1108/ACMM-11-2022-2722</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Cavitation ; Cavitation erosion ; Corrosion ; Corrosion potential ; Corrosion resistance ; Deformation ; Electrochemical noise ; Electrochemistry ; Erosion mechanisms ; Fast Fourier transformations ; Flow control ; Fourier transforms ; Intermetallic compounds ; Morphology ; Noise ; Spectrum analysis ; Uniform attack (corrosion)</subject><ispartof>Anti-corrosion methods and materials, 2023-02, Vol.70 (2), p.53-58</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3</citedby><cites>FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhu, Yesen</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Qin, Zhenbo</creatorcontrib><creatorcontrib>Hou, Mengyang</creatorcontrib><creatorcontrib>Hu, Taoyong</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><title>Identifying the cavitation erosion stages of AA5083 by electrochemical noise analyses</title><title>Anti-corrosion methods and materials</title><description>Purpose The purpose of this paper is to study the cavitation erosion stages of AA5083 by electrochemical noise (EN). Design/methodology/approach EN technology including noise resistance and fast Fourier transform were used to characterize the electrochemical process during the cavitation erosion process. Findings AA5083 suffers from uniform corrosion during the cavitation erosion process. The whole cavitation erosion process can be divided into three stages: incubation stage, acceleration stage and steady-state stage. EN signals showed obvious differences in different stages of cavitation erosion. Originality/value EN technique is a suitable method that can be used to study cavitation erosion mechanism and identify cavitation erosion stages.</description><subject>Cavitation</subject><subject>Cavitation erosion</subject><subject>Corrosion</subject><subject>Corrosion potential</subject><subject>Corrosion resistance</subject><subject>Deformation</subject><subject>Electrochemical noise</subject><subject>Electrochemistry</subject><subject>Erosion mechanisms</subject><subject>Fast Fourier transformations</subject><subject>Flow control</subject><subject>Fourier transforms</subject><subject>Intermetallic compounds</subject><subject>Morphology</subject><subject>Noise</subject><subject>Spectrum analysis</subject><subject>Uniform attack (corrosion)</subject><issn>0003-5599</issn><issn>0003-5599</issn><issn>1758-4221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkEtPwzAQhC0EEqXwA7hZ4mzwK3FyjCoelVpxoWfLsddtqjQptouUf0-icgCJ08xKM6vdD6F7Rh8Zo8VTtVivCWOEU84JV5xfoBmlVJAsK8vLX_4a3cS4H0fOpZqhzdJBlxo_NN0Wpx1ga76aZFLTdxhCHyeNyWwh4t7jqspoIXA9YGjBptDbHRwaa1rc9U0EbDrTDhHiLbrypo1w96NztHl5_li8kdX763JRrYgVTCZSGimZYW68RBglcl6LktdlmflcQJbJ2ksBKvNARaG8crliVuaSO-cUK8CIOXo47z2G_vMEMel9fwrjEVHzQpaCCsXyMcXOKTs-FAN4fQzNwYRBM6onenqiNzo90dMTvbFDzx04QDCt-7fyB7j4BqfTb68</recordid><startdate>20230209</startdate><enddate>20230209</enddate><creator>Zhu, Yesen</creator><creator>Liu, Zhe</creator><creator>Qin, Zhenbo</creator><creator>Hou, Mengyang</creator><creator>Hu, Taoyong</creator><creator>Yuan, Quan</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>7SR</scope><scope>7WY</scope><scope>7XB</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.G</scope><scope>L6V</scope><scope>M0F</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230209</creationdate><title>Identifying the cavitation erosion stages of AA5083 by electrochemical noise analyses</title><author>Zhu, Yesen ; Liu, Zhe ; Qin, Zhenbo ; Hou, Mengyang ; Hu, Taoyong ; Yuan, Quan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cavitation</topic><topic>Cavitation erosion</topic><topic>Corrosion</topic><topic>Corrosion potential</topic><topic>Corrosion resistance</topic><topic>Deformation</topic><topic>Electrochemical noise</topic><topic>Electrochemistry</topic><topic>Erosion mechanisms</topic><topic>Fast Fourier transformations</topic><topic>Flow control</topic><topic>Fourier transforms</topic><topic>Intermetallic compounds</topic><topic>Morphology</topic><topic>Noise</topic><topic>Spectrum analysis</topic><topic>Uniform attack (corrosion)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yesen</creatorcontrib><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Qin, Zhenbo</creatorcontrib><creatorcontrib>Hou, Mengyang</creatorcontrib><creatorcontrib>Hu, Taoyong</creatorcontrib><creatorcontrib>Yuan, Quan</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Anti-corrosion methods and materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yesen</au><au>Liu, Zhe</au><au>Qin, Zhenbo</au><au>Hou, Mengyang</au><au>Hu, Taoyong</au><au>Yuan, Quan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying the cavitation erosion stages of AA5083 by electrochemical noise analyses</atitle><jtitle>Anti-corrosion methods and materials</jtitle><date>2023-02-09</date><risdate>2023</risdate><volume>70</volume><issue>2</issue><spage>53</spage><epage>58</epage><pages>53-58</pages><issn>0003-5599</issn><eissn>0003-5599</eissn><eissn>1758-4221</eissn><abstract>Purpose The purpose of this paper is to study the cavitation erosion stages of AA5083 by electrochemical noise (EN). Design/methodology/approach EN technology including noise resistance and fast Fourier transform were used to characterize the electrochemical process during the cavitation erosion process. Findings AA5083 suffers from uniform corrosion during the cavitation erosion process. The whole cavitation erosion process can be divided into three stages: incubation stage, acceleration stage and steady-state stage. EN signals showed obvious differences in different stages of cavitation erosion. Originality/value EN technique is a suitable method that can be used to study cavitation erosion mechanism and identify cavitation erosion stages.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/ACMM-11-2022-2722</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-5599
ispartof Anti-corrosion methods and materials, 2023-02, Vol.70 (2), p.53-58
issn 0003-5599
0003-5599
1758-4221
language eng
recordid cdi_emerald_primary_10_1108_ACMM-11-2022-2722
source Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)
subjects Cavitation
Cavitation erosion
Corrosion
Corrosion potential
Corrosion resistance
Deformation
Electrochemical noise
Electrochemistry
Erosion mechanisms
Fast Fourier transformations
Flow control
Fourier transforms
Intermetallic compounds
Morphology
Noise
Spectrum analysis
Uniform attack (corrosion)
title Identifying the cavitation erosion stages of AA5083 by electrochemical noise analyses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A03%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20the%20cavitation%20erosion%20stages%20of%20AA5083%20by%20electrochemical%20noise%20analyses&rft.jtitle=Anti-corrosion%20methods%20and%20materials&rft.au=Zhu,%20Yesen&rft.date=2023-02-09&rft.volume=70&rft.issue=2&rft.spage=53&rft.epage=58&rft.pages=53-58&rft.issn=0003-5599&rft.eissn=0003-5599&rft_id=info:doi/10.1108/ACMM-11-2022-2722&rft_dat=%3Cproquest_emera%3E2849303716%3C/proquest_emera%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c314t-9a441a1d2473a7362b392b995f63e554bf43e75fe0387f7d671c4642ddd718ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2849303716&rft_id=info:pmid/&rfr_iscdi=true