Loading…

Comparison of simplified techniques for solving selected coupled electroheat problems

Purpose The purpose of this paper is to compare different reduced-order models for models of control of induction brazing process. In the presented application, the problem is to reconstruct temperature at the points of interests (hot spots) from information measured at accessible places. Design/met...

Full description

Saved in:
Bibliographic Details
Published in:Compel 2020-03, Vol.39 (1), p.220-230
Main Authors: Pánek, David, Karban, Pavel, Orosz, Tamás, Doležel, Ivo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c320t-f6dcd6749d2b33e28e1b6f77d60c47bfb4ad596d927f9ed2851fe841956581c63
cites cdi_FETCH-LOGICAL-c320t-f6dcd6749d2b33e28e1b6f77d60c47bfb4ad596d927f9ed2851fe841956581c63
container_end_page 230
container_issue 1
container_start_page 220
container_title Compel
container_volume 39
creator Pánek, David
Karban, Pavel
Orosz, Tamás
Doležel, Ivo
description Purpose The purpose of this paper is to compare different reduced-order models for models of control of induction brazing process. In the presented application, the problem is to reconstruct temperature at the points of interests (hot spots) from information measured at accessible places. Design/methodology/approach The paper describes the process of induction brazing. It presents the full field model and evaluates the possibilities for obtaining reduced models for temperature estimation. The primary attention is paid to the model based on proper orthogonal decomposition (POD). Findings The paper shows that for the given application, it is possible to find low-order estimator. In the examined linear case, the best estimator was created using POD reduced model together with the linear Kalman filter. Research limitations/implications The authors are aware of two main limitations of the presented study: material properties are considered linear, which is not a completely realistic assumption. However, if strong coupling and nonlinear material parameters are considered, the model becomes unsolvable. The process and measurement uncertainties are not considered. Originality/value The paper deals with POD of multi-physics 3 D application of induction brazing. The paper compares 11 different methods for temperature estimator design.
doi_str_mv 10.1108/COMPEL-06-2019-0244
format article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_emerald_primary_10_1108_COMPEL-06-2019-0244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494894026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-f6dcd6749d2b33e28e1b6f77d60c47bfb4ad596d927f9ed2851fe841956581c63</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-Ai8Fz9F8NW2OUtYPWFkP7jm0ycTt0jY1aQX_va314sG5vAzzvjPDg9A1JbeUkvyu2L28braYSMwIVZgwIU7QipFU4FQSeYpWhHOGqRTqHF3EeCRTqZSs0L7wbV-GOvou8S6Jdds3tavBJgOYQ1d_jBAT50MSffNZd-9JhAbMMM2NH_tm0p8--AOUQ9IHXzXQxkt05somwtWvrtH-YfNWPOHt7vG5uN9iwxkZsJPWWJkJZVnFObAcaCVdlllJjMgqV4nSpkpaxTKnwLI8pQ5yQVUq05waydfoZtk7HZ4_HfTRj6GbTmomlMiVIGx28cVlgo8xgNN9qNsyfGlK9MxPL_w0kXrmp2d-U4otKWghlI39J_QHOv8GxCpz3Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494894026</pqid></control><display><type>article</type><title>Comparison of simplified techniques for solving selected coupled electroheat problems</title><source>ABI/INFORM Global</source><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Pánek, David ; Karban, Pavel ; Orosz, Tamás ; Doležel, Ivo</creator><creatorcontrib>Pánek, David ; Karban, Pavel ; Orosz, Tamás ; Doležel, Ivo</creatorcontrib><description>Purpose The purpose of this paper is to compare different reduced-order models for models of control of induction brazing process. In the presented application, the problem is to reconstruct temperature at the points of interests (hot spots) from information measured at accessible places. Design/methodology/approach The paper describes the process of induction brazing. It presents the full field model and evaluates the possibilities for obtaining reduced models for temperature estimation. The primary attention is paid to the model based on proper orthogonal decomposition (POD). Findings The paper shows that for the given application, it is possible to find low-order estimator. In the examined linear case, the best estimator was created using POD reduced model together with the linear Kalman filter. Research limitations/implications The authors are aware of two main limitations of the presented study: material properties are considered linear, which is not a completely realistic assumption. However, if strong coupling and nonlinear material parameters are considered, the model becomes unsolvable. The process and measurement uncertainties are not considered. Originality/value The paper deals with POD of multi-physics 3 D application of induction brazing. The paper compares 11 different methods for temperature estimator design.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/COMPEL-06-2019-0244</identifier><language>eng</language><publisher>Bradford: Emerald Publishing Limited</publisher><subject>Aluminum ; Boundary conditions ; Electric heating ; Heat ; Induction brazing ; Kalman filters ; Load ; Magnetic fields ; Material properties ; Parameter uncertainty ; Partial differential equations ; Proper Orthogonal Decomposition ; Reduced order models ; Temperature</subject><ispartof>Compel, 2020-03, Vol.39 (1), p.220-230</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-f6dcd6749d2b33e28e1b6f77d60c47bfb4ad596d927f9ed2851fe841956581c63</citedby><cites>FETCH-LOGICAL-c320t-f6dcd6749d2b33e28e1b6f77d60c47bfb4ad596d927f9ed2851fe841956581c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2494894026/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2494894026?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Pánek, David</creatorcontrib><creatorcontrib>Karban, Pavel</creatorcontrib><creatorcontrib>Orosz, Tamás</creatorcontrib><creatorcontrib>Doležel, Ivo</creatorcontrib><title>Comparison of simplified techniques for solving selected coupled electroheat problems</title><title>Compel</title><description>Purpose The purpose of this paper is to compare different reduced-order models for models of control of induction brazing process. In the presented application, the problem is to reconstruct temperature at the points of interests (hot spots) from information measured at accessible places. Design/methodology/approach The paper describes the process of induction brazing. It presents the full field model and evaluates the possibilities for obtaining reduced models for temperature estimation. The primary attention is paid to the model based on proper orthogonal decomposition (POD). Findings The paper shows that for the given application, it is possible to find low-order estimator. In the examined linear case, the best estimator was created using POD reduced model together with the linear Kalman filter. Research limitations/implications The authors are aware of two main limitations of the presented study: material properties are considered linear, which is not a completely realistic assumption. However, if strong coupling and nonlinear material parameters are considered, the model becomes unsolvable. The process and measurement uncertainties are not considered. Originality/value The paper deals with POD of multi-physics 3 D application of induction brazing. The paper compares 11 different methods for temperature estimator design.</description><subject>Aluminum</subject><subject>Boundary conditions</subject><subject>Electric heating</subject><subject>Heat</subject><subject>Induction brazing</subject><subject>Kalman filters</subject><subject>Load</subject><subject>Magnetic fields</subject><subject>Material properties</subject><subject>Parameter uncertainty</subject><subject>Partial differential equations</subject><subject>Proper Orthogonal Decomposition</subject><subject>Reduced order models</subject><subject>Temperature</subject><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LxDAQhoMouK7-Ai8Fz9F8NW2OUtYPWFkP7jm0ycTt0jY1aQX_va314sG5vAzzvjPDg9A1JbeUkvyu2L28braYSMwIVZgwIU7QipFU4FQSeYpWhHOGqRTqHF3EeCRTqZSs0L7wbV-GOvou8S6Jdds3tavBJgOYQ1d_jBAT50MSffNZd-9JhAbMMM2NH_tm0p8--AOUQ9IHXzXQxkt05somwtWvrtH-YfNWPOHt7vG5uN9iwxkZsJPWWJkJZVnFObAcaCVdlllJjMgqV4nSpkpaxTKnwLI8pQ5yQVUq05waydfoZtk7HZ4_HfTRj6GbTmomlMiVIGx28cVlgo8xgNN9qNsyfGlK9MxPL_w0kXrmp2d-U4otKWghlI39J_QHOv8GxCpz3Q</recordid><startdate>20200311</startdate><enddate>20200311</enddate><creator>Pánek, David</creator><creator>Karban, Pavel</creator><creator>Orosz, Tamás</creator><creator>Doležel, Ivo</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20200311</creationdate><title>Comparison of simplified techniques for solving selected coupled electroheat problems</title><author>Pánek, David ; Karban, Pavel ; Orosz, Tamás ; Doležel, Ivo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-f6dcd6749d2b33e28e1b6f77d60c47bfb4ad596d927f9ed2851fe841956581c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Boundary conditions</topic><topic>Electric heating</topic><topic>Heat</topic><topic>Induction brazing</topic><topic>Kalman filters</topic><topic>Load</topic><topic>Magnetic fields</topic><topic>Material properties</topic><topic>Parameter uncertainty</topic><topic>Partial differential equations</topic><topic>Proper Orthogonal Decomposition</topic><topic>Reduced order models</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pánek, David</creatorcontrib><creatorcontrib>Karban, Pavel</creatorcontrib><creatorcontrib>Orosz, Tamás</creatorcontrib><creatorcontrib>Doležel, Ivo</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer science database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pánek, David</au><au>Karban, Pavel</au><au>Orosz, Tamás</au><au>Doležel, Ivo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of simplified techniques for solving selected coupled electroheat problems</atitle><jtitle>Compel</jtitle><date>2020-03-11</date><risdate>2020</risdate><volume>39</volume><issue>1</issue><spage>220</spage><epage>230</epage><pages>220-230</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><abstract>Purpose The purpose of this paper is to compare different reduced-order models for models of control of induction brazing process. In the presented application, the problem is to reconstruct temperature at the points of interests (hot spots) from information measured at accessible places. Design/methodology/approach The paper describes the process of induction brazing. It presents the full field model and evaluates the possibilities for obtaining reduced models for temperature estimation. The primary attention is paid to the model based on proper orthogonal decomposition (POD). Findings The paper shows that for the given application, it is possible to find low-order estimator. In the examined linear case, the best estimator was created using POD reduced model together with the linear Kalman filter. Research limitations/implications The authors are aware of two main limitations of the presented study: material properties are considered linear, which is not a completely realistic assumption. However, if strong coupling and nonlinear material parameters are considered, the model becomes unsolvable. The process and measurement uncertainties are not considered. Originality/value The paper deals with POD of multi-physics 3 D application of induction brazing. The paper compares 11 different methods for temperature estimator design.</abstract><cop>Bradford</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/COMPEL-06-2019-0244</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0332-1649
ispartof Compel, 2020-03, Vol.39 (1), p.220-230
issn 0332-1649
2054-5606
language eng
recordid cdi_emerald_primary_10_1108_COMPEL-06-2019-0244
source ABI/INFORM Global; Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)
subjects Aluminum
Boundary conditions
Electric heating
Heat
Induction brazing
Kalman filters
Load
Magnetic fields
Material properties
Parameter uncertainty
Partial differential equations
Proper Orthogonal Decomposition
Reduced order models
Temperature
title Comparison of simplified techniques for solving selected coupled electroheat problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A54%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20simplified%20techniques%20for%20solving%20selected%20coupled%20electroheat%20problems&rft.jtitle=Compel&rft.au=P%C3%A1nek,%20David&rft.date=2020-03-11&rft.volume=39&rft.issue=1&rft.spage=220&rft.epage=230&rft.pages=220-230&rft.issn=0332-1649&rft.eissn=2054-5606&rft_id=info:doi/10.1108/COMPEL-06-2019-0244&rft_dat=%3Cproquest_emera%3E2494894026%3C/proquest_emera%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c320t-f6dcd6749d2b33e28e1b6f77d60c47bfb4ad596d927f9ed2851fe841956581c63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2494894026&rft_id=info:pmid/&rfr_iscdi=true